Spectral Multipliers on Damek-Ricci Spaces
Journal of Lie theory, Tome 17 (2007) no. 1, pp. 163-189.

Voir la notice de l'article provenant de la source Heldermann Verlag

Let $S$ be a Damek--Ricci space, and $\Delta$ be a distinguished Laplacean on $S$ which is left invariant and selfadjoint in $L^2(\rho)$. We prove that $S$ is a Calder\'on-Zygmund space with respect to the right Haar measure $\rho$ and the left invariant distance. We give sufficient conditions of H\"ormander type on a multiplier $m$ so that the operator $m(\Delta)$ is bounded on $L^p(\rho)$ when $1$, and of weak type $(1,1)$.
Classification : 22E30, 42B15, 42B20, 43A80
Mots-clés : Multipliers, singular integrals, Calderon-Zygmund decomposition, Damek-Ricci spaces
@article{JLT_2007_17_1_JLT_2007_17_1_a9,
     author = {M. Vallarino },
     title = {Spectral {Multipliers} on {Damek-Ricci} {Spaces}},
     journal = {Journal of Lie theory},
     pages = {163--189},
     publisher = {mathdoc},
     volume = {17},
     number = {1},
     year = {2007},
     url = {http://geodesic.mathdoc.fr/item/JLT_2007_17_1_JLT_2007_17_1_a9/}
}
TY  - JOUR
AU  - M. Vallarino 
TI  - Spectral Multipliers on Damek-Ricci Spaces
JO  - Journal of Lie theory
PY  - 2007
SP  - 163
EP  - 189
VL  - 17
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/JLT_2007_17_1_JLT_2007_17_1_a9/
ID  - JLT_2007_17_1_JLT_2007_17_1_a9
ER  - 
%0 Journal Article
%A M. Vallarino 
%T Spectral Multipliers on Damek-Ricci Spaces
%J Journal of Lie theory
%D 2007
%P 163-189
%V 17
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/JLT_2007_17_1_JLT_2007_17_1_a9/
%F JLT_2007_17_1_JLT_2007_17_1_a9
M. Vallarino . Spectral Multipliers on Damek-Ricci Spaces. Journal of Lie theory, Tome 17 (2007) no. 1, pp. 163-189. http://geodesic.mathdoc.fr/item/JLT_2007_17_1_JLT_2007_17_1_a9/