Spectral Multipliers on Damek-Ricci Spaces
Journal of Lie theory, Tome 17 (2007) no. 1, pp. 163-189
Cet article a éte moissonné depuis la source Heldermann Verlag
Let $S$ be a Damek--Ricci space, and $\Delta$ be a distinguished Laplacean on $S$ which is left invariant and selfadjoint in $L^2(\rho)$. We prove that $S$ is a Calder\'on-Zygmund space with respect to the right Haar measure $\rho$ and the left invariant distance. We give sufficient conditions of H\"ormander type on a multiplier $m$ so that the operator $m(\Delta)$ is bounded on $L^p(\rho)$ when $1$, and of weak type $(1,1)$.
Classification :
22E30, 42B15, 42B20, 43A80
Mots-clés : Multipliers, singular integrals, Calderon-Zygmund decomposition, Damek-Ricci spaces
Mots-clés : Multipliers, singular integrals, Calderon-Zygmund decomposition, Damek-Ricci spaces
@article{JLT_2007_17_1_JLT_2007_17_1_a9,
author = {M. Vallarino },
title = {Spectral {Multipliers} on {Damek-Ricci} {Spaces}},
journal = {Journal of Lie theory},
pages = {163--189},
year = {2007},
volume = {17},
number = {1},
url = {http://geodesic.mathdoc.fr/item/JLT_2007_17_1_JLT_2007_17_1_a9/}
}
M. Vallarino . Spectral Multipliers on Damek-Ricci Spaces. Journal of Lie theory, Tome 17 (2007) no. 1, pp. 163-189. http://geodesic.mathdoc.fr/item/JLT_2007_17_1_JLT_2007_17_1_a9/