Decomposition of a Tensor Product of a Higher Symplectic Spinor Module and the Defining Representation of sp(2n, C)
Journal of Lie theory, Tome 17 (2007) no. 1, pp. 63-72
Cet article a éte moissonné depuis la source Heldermann Verlag
\def\p{{\frak p}} \def\s{{\frak s}} \def\C{{\Bbb C}} Let $L(\lambda)$ be the irreducible highest weight $\s\p(2n,\C)$-module with a highest weight $\lambda$, such that $L(\lambda)$ is an infinite dimensional module with bounded multiplicities, and let $F(\varpi_1)$ be the defining representation of $\s\p(2n,\C)$. In this article, the tensor product $L(\lambda)\otimes F(\varpi_1)$ is explicitly decomposed into irreducible summands. This decomposition may be used in order to define some invariant first order differential operators for metaplectic structures.
Classification :
17B10, 17B81, 22E47
Mots-clés : Symplectic spinors, harmonic spinors, Kostant's spinors, tensor products, decomposition of tensor products, modules with bounded multiplicities, Kac-Wakimoto formula
Mots-clés : Symplectic spinors, harmonic spinors, Kostant's spinors, tensor products, decomposition of tensor products, modules with bounded multiplicities, Kac-Wakimoto formula
@article{JLT_2007_17_1_JLT_2007_17_1_a3,
author = {S. Krysl },
title = {Decomposition of a {Tensor} {Product} of a {Higher} {Symplectic} {Spinor} {Module} and the {Defining} {Representation} of sp(2n, {C)}},
journal = {Journal of Lie theory},
pages = {63--72},
year = {2007},
volume = {17},
number = {1},
url = {http://geodesic.mathdoc.fr/item/JLT_2007_17_1_JLT_2007_17_1_a3/}
}
TY - JOUR AU - S. Krysl TI - Decomposition of a Tensor Product of a Higher Symplectic Spinor Module and the Defining Representation of sp(2n, C) JO - Journal of Lie theory PY - 2007 SP - 63 EP - 72 VL - 17 IS - 1 UR - http://geodesic.mathdoc.fr/item/JLT_2007_17_1_JLT_2007_17_1_a3/ ID - JLT_2007_17_1_JLT_2007_17_1_a3 ER -
%0 Journal Article %A S. Krysl %T Decomposition of a Tensor Product of a Higher Symplectic Spinor Module and the Defining Representation of sp(2n, C) %J Journal of Lie theory %D 2007 %P 63-72 %V 17 %N 1 %U http://geodesic.mathdoc.fr/item/JLT_2007_17_1_JLT_2007_17_1_a3/ %F JLT_2007_17_1_JLT_2007_17_1_a3
S. Krysl . Decomposition of a Tensor Product of a Higher Symplectic Spinor Module and the Defining Representation of sp(2n, C). Journal of Lie theory, Tome 17 (2007) no. 1, pp. 63-72. http://geodesic.mathdoc.fr/item/JLT_2007_17_1_JLT_2007_17_1_a3/