Nilpotent Metric Lie Algebras of Small Dimension
Journal of Lie theory, Tome 17 (2007) no. 1, pp. 41-61
Cet article a éte moissonné depuis la source Heldermann Verlag
In a recent paper [Transf. Groups 11 (2006) 87--131] we developed a general classification scheme for metric Lie algebras, i.e. for finite-dimensional Lie algebras equipped with a non-degenerate invariant inner product. Here we determine all nilpotent Lie algebras L with dim [L, L] = 2 which are used in this scheme. Furthermore, we use the scheme to classify all nilpotent metric Lie algebras of dimension at most 10.
Classification :
17B30, 17B56
Mots-clés : Nilpotent Lie algebra, invariant quadratic form
Mots-clés : Nilpotent Lie algebra, invariant quadratic form
@article{JLT_2007_17_1_JLT_2007_17_1_a2,
author = {I. Kath },
title = {Nilpotent {Metric} {Lie} {Algebras} of {Small} {Dimension}},
journal = {Journal of Lie theory},
pages = {41--61},
year = {2007},
volume = {17},
number = {1},
url = {http://geodesic.mathdoc.fr/item/JLT_2007_17_1_JLT_2007_17_1_a2/}
}
I. Kath . Nilpotent Metric Lie Algebras of Small Dimension. Journal of Lie theory, Tome 17 (2007) no. 1, pp. 41-61. http://geodesic.mathdoc.fr/item/JLT_2007_17_1_JLT_2007_17_1_a2/