On Centralizers of Elements in the Lie Algebra of the Special Cremona Group SA2(k)
Journal of Lie theory, Tome 16 (2006) no. 3, pp. 561-567
Cet article a éte moissonné depuis la source Heldermann Verlag
\def\div{\mathop{\rm div}\nolimits} \def\Der{\mathop{\rm Der}\nolimits} We give a description of maximal abelian subalgebras and centralizers of elements in the Lie algebra $sa_2(k)=\{D\in \Der k[x,y] \mid \div D = 0\}$ over an algebraically closed field $k$ of characteristic $0$. This description is given in terms of closed polynomials.
Classification :
17B65, 17B05
Mots-clés : Lie algebra, derivation, closed polynomial maximal abelian subalgebra
Mots-clés : Lie algebra, derivation, closed polynomial maximal abelian subalgebra
@article{JLT_2006_16_3_JLT_2006_16_3_a7,
author = {A. P. Petravchuk and O. G. Iena },
title = {On {Centralizers} of {Elements} in the {Lie} {Algebra} of the {Special} {Cremona} {Group} {SA\protect\textsubscript{2}(k)}},
journal = {Journal of Lie theory},
pages = {561--567},
year = {2006},
volume = {16},
number = {3},
url = {http://geodesic.mathdoc.fr/item/JLT_2006_16_3_JLT_2006_16_3_a7/}
}
TY - JOUR AU - A. P. Petravchuk AU - O. G. Iena TI - On Centralizers of Elements in the Lie Algebra of the Special Cremona Group SA2(k) JO - Journal of Lie theory PY - 2006 SP - 561 EP - 567 VL - 16 IS - 3 UR - http://geodesic.mathdoc.fr/item/JLT_2006_16_3_JLT_2006_16_3_a7/ ID - JLT_2006_16_3_JLT_2006_16_3_a7 ER -
A. P. Petravchuk; O. G. Iena . On Centralizers of Elements in the Lie Algebra of the Special Cremona Group SA2(k). Journal of Lie theory, Tome 16 (2006) no. 3, pp. 561-567. http://geodesic.mathdoc.fr/item/JLT_2006_16_3_JLT_2006_16_3_a7/