Lie Superalgebras Based on a 3-Dimensional Real or Complex Lie Algebra
Journal of Lie theory, Tome 16 (2006) no. 3, pp. 539-56.

Voir la notice de l'article provenant de la source Heldermann Verlag

\def\g{{\frak g}} We give a complete classification of real and complex Lie superalgebras $\g_0\oplus\g_1$, for which $\g_0$ is a $3$-dimensional Lie algebra, and $\g_1$ is $\g_0$ itself under the adjoint representation.
Classification : 17B70, 81R05, 15A21, 15A63, 17B81
Mots-clés : Lie superalgebras, adjoint representation, symmetric equivariant maps
@article{JLT_2006_16_3_JLT_2006_16_3_a6,
     author = {I. Hern�ndez and G. Salgado and O. A. S�nchez-Valenzuela },
     title = {Lie {Superalgebras} {Based} on a {3-Dimensional} {Real} or {Complex} {Lie} {Algebra}},
     journal = {Journal of Lie theory},
     pages = {539--56},
     publisher = {mathdoc},
     volume = {16},
     number = {3},
     year = {2006},
     url = {http://geodesic.mathdoc.fr/item/JLT_2006_16_3_JLT_2006_16_3_a6/}
}
TY  - JOUR
AU  - I. Hern�ndez
AU  - G. Salgado
AU  - O. A. S�nchez-Valenzuela 
TI  - Lie Superalgebras Based on a 3-Dimensional Real or Complex Lie Algebra
JO  - Journal of Lie theory
PY  - 2006
SP  - 539
EP  - 56
VL  - 16
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/JLT_2006_16_3_JLT_2006_16_3_a6/
ID  - JLT_2006_16_3_JLT_2006_16_3_a6
ER  - 
%0 Journal Article
%A I. Hern�ndez
%A G. Salgado
%A O. A. S�nchez-Valenzuela 
%T Lie Superalgebras Based on a 3-Dimensional Real or Complex Lie Algebra
%J Journal of Lie theory
%D 2006
%P 539-56
%V 16
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/JLT_2006_16_3_JLT_2006_16_3_a6/
%F JLT_2006_16_3_JLT_2006_16_3_a6
I. Hern�ndez; G. Salgado; O. A. S�nchez-Valenzuela . Lie Superalgebras Based on a 3-Dimensional Real or Complex Lie Algebra. Journal of Lie theory, Tome 16 (2006) no. 3, pp. 539-56. http://geodesic.mathdoc.fr/item/JLT_2006_16_3_JLT_2006_16_3_a6/