The CR Structure of Minimal Orbits in Complex Flag Manifolds
Journal of Lie theory, Tome 16 (2006) no. 3, pp. 483-53
Cet article a éte moissonné depuis la source Heldermann Verlag
Let G-hat be a complex semisimple Lie group, Q a parabolic subgroup and G a real form of G-hat. The flag manifold G-hat / Q decomposes into finitely many G-orbits among them there is exactly one orbit of minimal dimension, which is compact. We study these minimal orbits from the point of view of CR geometry. In particular we characterize those minimal orbits that are of finite type and satisfy various nondegeneracy conditions, compute their fundamental group and describe the space of their global CR functions. Our main tool are parabolic CR algebras, which give an infinitesimal description of the CR structure of minimal orbits.
Classification :
32V05, 14M15, 17B20, 22E15, 32M10
Mots-clés : Complex flag manifold, homogeneousCR manifold, minimal orbit of a real form, parabolic CR algebra
Mots-clés : Complex flag manifold, homogeneousCR manifold, minimal orbit of a real form, parabolic CR algebra
@article{JLT_2006_16_3_JLT_2006_16_3_a4,
author = {A. Altomani and C. Medori and M. Nacinovich },
title = {The {CR} {Structure} of {Minimal} {Orbits} in {Complex} {Flag} {Manifolds}},
journal = {Journal of Lie theory},
pages = {483--53},
year = {2006},
volume = {16},
number = {3},
url = {http://geodesic.mathdoc.fr/item/JLT_2006_16_3_JLT_2006_16_3_a4/}
}
TY - JOUR AU - A. Altomani AU - C. Medori AU - M. Nacinovich TI - The CR Structure of Minimal Orbits in Complex Flag Manifolds JO - Journal of Lie theory PY - 2006 SP - 483 EP - 53 VL - 16 IS - 3 UR - http://geodesic.mathdoc.fr/item/JLT_2006_16_3_JLT_2006_16_3_a4/ ID - JLT_2006_16_3_JLT_2006_16_3_a4 ER -
A. Altomani; C. Medori; M. Nacinovich . The CR Structure of Minimal Orbits in Complex Flag Manifolds. Journal of Lie theory, Tome 16 (2006) no. 3, pp. 483-53. http://geodesic.mathdoc.fr/item/JLT_2006_16_3_JLT_2006_16_3_a4/