Reduction Theorems for a Certain Generalization of Contact Metric Manifolds
Journal of Lie theory, Tome 16 (2006) no. 3, pp. 471-482
Cet article a éte moissonné depuis la source Heldermann Verlag
We consider a Riemannian manifold with a compatible f-structure which admits a parallelizable kernel. With some additional integrability conditions it is called an (almost) S-manifold, which is a natural generalization of a contact metric and a Sasakian manifold. Then we consider an action of a Lie group preserving the given structures. In such a context we define a momentum map and prove some reduction theorems.
Classification :
53D10, 53D20, 53C15, 53C25
Mots-clés : Contact metric manifold, momentum map, contact reduction, generalized contact metric manifold, f-structure
Mots-clés : Contact metric manifold, momentum map, contact reduction, generalized contact metric manifold, f-structure
@article{JLT_2006_16_3_JLT_2006_16_3_a3,
author = {L. Di Terlizzi and J. J. Konderak },
title = {Reduction {Theorems} for a {Certain} {Generalization} of {Contact} {Metric} {Manifolds}},
journal = {Journal of Lie theory},
pages = {471--482},
year = {2006},
volume = {16},
number = {3},
url = {http://geodesic.mathdoc.fr/item/JLT_2006_16_3_JLT_2006_16_3_a3/}
}
TY - JOUR AU - L. Di Terlizzi AU - J. J. Konderak TI - Reduction Theorems for a Certain Generalization of Contact Metric Manifolds JO - Journal of Lie theory PY - 2006 SP - 471 EP - 482 VL - 16 IS - 3 UR - http://geodesic.mathdoc.fr/item/JLT_2006_16_3_JLT_2006_16_3_a3/ ID - JLT_2006_16_3_JLT_2006_16_3_a3 ER -
L. Di Terlizzi; J. J. Konderak . Reduction Theorems for a Certain Generalization of Contact Metric Manifolds. Journal of Lie theory, Tome 16 (2006) no. 3, pp. 471-482. http://geodesic.mathdoc.fr/item/JLT_2006_16_3_JLT_2006_16_3_a3/