Reduction Theorems for a Certain Generalization of Contact Metric Manifolds
Journal of Lie theory, Tome 16 (2006) no. 3, pp. 471-482.

Voir la notice de l'article provenant de la source Heldermann Verlag

We consider a Riemannian manifold with a compatible f-structure which admits a parallelizable kernel. With some additional integrability conditions it is called an (almost) S-manifold, which is a natural generalization of a contact metric and a Sasakian manifold. Then we consider an action of a Lie group preserving the given structures. In such a context we define a momentum map and prove some reduction theorems.
Classification : 53D10, 53D20, 53C15, 53C25
Mots-clés : Contact metric manifold, momentum map, contact reduction, generalized contact metric manifold, f-structure
@article{JLT_2006_16_3_JLT_2006_16_3_a3,
     author = {L. Di Terlizzi and J. J. Konderak },
     title = {Reduction {Theorems} for a {Certain} {Generalization} of {Contact} {Metric} {Manifolds}},
     journal = {Journal of Lie theory},
     pages = {471--482},
     publisher = {mathdoc},
     volume = {16},
     number = {3},
     year = {2006},
     url = {http://geodesic.mathdoc.fr/item/JLT_2006_16_3_JLT_2006_16_3_a3/}
}
TY  - JOUR
AU  - L. Di Terlizzi
AU  - J. J. Konderak 
TI  - Reduction Theorems for a Certain Generalization of Contact Metric Manifolds
JO  - Journal of Lie theory
PY  - 2006
SP  - 471
EP  - 482
VL  - 16
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/JLT_2006_16_3_JLT_2006_16_3_a3/
ID  - JLT_2006_16_3_JLT_2006_16_3_a3
ER  - 
%0 Journal Article
%A L. Di Terlizzi
%A J. J. Konderak 
%T Reduction Theorems for a Certain Generalization of Contact Metric Manifolds
%J Journal of Lie theory
%D 2006
%P 471-482
%V 16
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/JLT_2006_16_3_JLT_2006_16_3_a3/
%F JLT_2006_16_3_JLT_2006_16_3_a3
L. Di Terlizzi; J. J. Konderak . Reduction Theorems for a Certain Generalization of Contact Metric Manifolds. Journal of Lie theory, Tome 16 (2006) no. 3, pp. 471-482. http://geodesic.mathdoc.fr/item/JLT_2006_16_3_JLT_2006_16_3_a3/