Coadjoint Orbits for A+n-1, B+n, and D+n
Journal of Lie theory, Tome 16 (2006) no. 3, pp. 455-469
Cet article a éte moissonné depuis la source Heldermann Verlag
A complete description of the coadjoint orbits for $A_{n-1}^{+}$, the nilpotent Lie algebra of $n\times n$ strictly upper triangular matrices, has not yet been obtained, though there has been steady progress on it ever since the orbit method was devised. We apply methods developed by Andr\'{e} to find defining equations for the elementary coadjoint orbits for the maximal nilpotent Lie subalgebras of the orthogonal Lie algebras, and we also determine all the possible dimensions of coadjoint orbits in the case of $A_{n-1}^+$.
Classification :
17B30,17B35
Mots-clés : Coadjoint orbit, nilpotent Lie algebra
Mots-clés : Coadjoint orbit, nilpotent Lie algebra
@article{JLT_2006_16_3_JLT_2006_16_3_a2,
author = {S. Mukherjee },
title = {Coadjoint {Orbits} for {A\protect\textsuperscript{+}\protect\textsubscript{n-1},} {B\protect\textsuperscript{+}\protect\textsubscript{n},} and {D\protect\textsuperscript{+}\protect\textsubscript{n}}},
journal = {Journal of Lie theory},
pages = {455--469},
year = {2006},
volume = {16},
number = {3},
url = {http://geodesic.mathdoc.fr/item/JLT_2006_16_3_JLT_2006_16_3_a2/}
}
S. Mukherjee . Coadjoint Orbits for A+n-1, B+n, and D+n. Journal of Lie theory, Tome 16 (2006) no. 3, pp. 455-469. http://geodesic.mathdoc.fr/item/JLT_2006_16_3_JLT_2006_16_3_a2/