Coadjoint Orbits for A+n-1, B+n, and D+n
Journal of Lie theory, Tome 16 (2006) no. 3, pp. 455-469.

Voir la notice de l'article provenant de la source Heldermann Verlag

A complete description of the coadjoint orbits for $A_{n-1}^{+}$, the nilpotent Lie algebra of $n\times n$ strictly upper triangular matrices, has not yet been obtained, though there has been steady progress on it ever since the orbit method was devised. We apply methods developed by Andr\'{e} to find defining equations for the elementary coadjoint orbits for the maximal nilpotent Lie subalgebras of the orthogonal Lie algebras, and we also determine all the possible dimensions of coadjoint orbits in the case of $A_{n-1}^+$.
Classification : 17B30,17B35
Mots-clés : Coadjoint orbit, nilpotent Lie algebra
@article{JLT_2006_16_3_JLT_2006_16_3_a2,
     author = {S. Mukherjee },
     title = {Coadjoint {Orbits} for {A\protect\textsuperscript{+}\protect\textsubscript{n-1},} {B\protect\textsuperscript{+}\protect\textsubscript{n},} and {D\protect\textsuperscript{+}\protect\textsubscript{n}}},
     journal = {Journal of Lie theory},
     pages = {455--469},
     publisher = {mathdoc},
     volume = {16},
     number = {3},
     year = {2006},
     url = {http://geodesic.mathdoc.fr/item/JLT_2006_16_3_JLT_2006_16_3_a2/}
}
TY  - JOUR
AU  - S. Mukherjee 
TI  - Coadjoint Orbits for A+n-1, B+n, and D+n
JO  - Journal of Lie theory
PY  - 2006
SP  - 455
EP  - 469
VL  - 16
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/JLT_2006_16_3_JLT_2006_16_3_a2/
ID  - JLT_2006_16_3_JLT_2006_16_3_a2
ER  - 
%0 Journal Article
%A S. Mukherjee 
%T Coadjoint Orbits for A+n-1, B+n, and D+n
%J Journal of Lie theory
%D 2006
%P 455-469
%V 16
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/JLT_2006_16_3_JLT_2006_16_3_a2/
%F JLT_2006_16_3_JLT_2006_16_3_a2
S. Mukherjee . Coadjoint Orbits for A+n-1, B+n, and D+n. Journal of Lie theory, Tome 16 (2006) no. 3, pp. 455-469. http://geodesic.mathdoc.fr/item/JLT_2006_16_3_JLT_2006_16_3_a2/