Finite-dimensional Lie Subalgebras of the Weyl Algebra
Journal of Lie theory, Tome 16 (2006) no. 3, pp. 427-454.

Voir la notice de l'article provenant de la source Heldermann Verlag

We classify up to isomorphism all finite-dimensional Lie algebras that can be realised as Lie subalgebras of the complex Weyl algebra $A_1$. The list we obtain turns out to be countable and, for example, the only non-solvable Lie algebras with this property are: $\frak{sl}(2)$, $\frak{sl}(2)\times{\bf C}$ and $\frak{sl}(2)\ltimes{\cal H}_3$. We then give several different characterisations, normal forms and isotropy groups for the action of ${\rm Aut}(A_1)\times {\rm Aut}(\frak{sl}(2))$ on a class of realisations of $\frak{sl}(2)$ in $A_1$.
Classification : 16S32, 17B60
Mots-clés : Finite-dimensional Lie subalgebras, Weyl algebra, embeddings
@article{JLT_2006_16_3_JLT_2006_16_3_a1,
     author = {M. Rausch de Traubenberg and M. J. Slupinski and A. Tanasa },
     title = {Finite-dimensional {Lie} {Subalgebras} of the {Weyl} {Algebra}},
     journal = {Journal of Lie theory},
     pages = {427--454},
     publisher = {mathdoc},
     volume = {16},
     number = {3},
     year = {2006},
     url = {http://geodesic.mathdoc.fr/item/JLT_2006_16_3_JLT_2006_16_3_a1/}
}
TY  - JOUR
AU  - M. Rausch de Traubenberg
AU  - M. J. Slupinski
AU  - A. Tanasa 
TI  - Finite-dimensional Lie Subalgebras of the Weyl Algebra
JO  - Journal of Lie theory
PY  - 2006
SP  - 427
EP  - 454
VL  - 16
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/JLT_2006_16_3_JLT_2006_16_3_a1/
ID  - JLT_2006_16_3_JLT_2006_16_3_a1
ER  - 
%0 Journal Article
%A M. Rausch de Traubenberg
%A M. J. Slupinski
%A A. Tanasa 
%T Finite-dimensional Lie Subalgebras of the Weyl Algebra
%J Journal of Lie theory
%D 2006
%P 427-454
%V 16
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/JLT_2006_16_3_JLT_2006_16_3_a1/
%F JLT_2006_16_3_JLT_2006_16_3_a1
M. Rausch de Traubenberg; M. J. Slupinski; A. Tanasa . Finite-dimensional Lie Subalgebras of the Weyl Algebra. Journal of Lie theory, Tome 16 (2006) no. 3, pp. 427-454. http://geodesic.mathdoc.fr/item/JLT_2006_16_3_JLT_2006_16_3_a1/