Finite-dimensional Lie Subalgebras of the Weyl Algebra
Journal of Lie theory, Tome 16 (2006) no. 3, pp. 427-454
Cet article a éte moissonné depuis la source Heldermann Verlag
We classify up to isomorphism all finite-dimensional Lie algebras that can be realised as Lie subalgebras of the complex Weyl algebra $A_1$. The list we obtain turns out to be countable and, for example, the only non-solvable Lie algebras with this property are: $\frak{sl}(2)$, $\frak{sl}(2)\times{\bf C}$ and $\frak{sl}(2)\ltimes{\cal H}_3$. We then give several different characterisations, normal forms and isotropy groups for the action of ${\rm Aut}(A_1)\times {\rm Aut}(\frak{sl}(2))$ on a class of realisations of $\frak{sl}(2)$ in $A_1$.
Classification :
16S32, 17B60
Mots-clés : Finite-dimensional Lie subalgebras, Weyl algebra, embeddings
Mots-clés : Finite-dimensional Lie subalgebras, Weyl algebra, embeddings
@article{JLT_2006_16_3_JLT_2006_16_3_a1,
author = {M. Rausch de Traubenberg and M. J. Slupinski and A. Tanasa },
title = {Finite-dimensional {Lie} {Subalgebras} of the {Weyl} {Algebra}},
journal = {Journal of Lie theory},
pages = {427--454},
year = {2006},
volume = {16},
number = {3},
url = {http://geodesic.mathdoc.fr/item/JLT_2006_16_3_JLT_2006_16_3_a1/}
}
TY - JOUR AU - M. Rausch de Traubenberg AU - M. J. Slupinski AU - A. Tanasa TI - Finite-dimensional Lie Subalgebras of the Weyl Algebra JO - Journal of Lie theory PY - 2006 SP - 427 EP - 454 VL - 16 IS - 3 UR - http://geodesic.mathdoc.fr/item/JLT_2006_16_3_JLT_2006_16_3_a1/ ID - JLT_2006_16_3_JLT_2006_16_3_a1 ER -
M. Rausch de Traubenberg; M. J. Slupinski; A. Tanasa . Finite-dimensional Lie Subalgebras of the Weyl Algebra. Journal of Lie theory, Tome 16 (2006) no. 3, pp. 427-454. http://geodesic.mathdoc.fr/item/JLT_2006_16_3_JLT_2006_16_3_a1/