Invariant Pseudo-K�hler Metrics in Dimension Four
Journal of Lie theory, Tome 16 (2006) no. 2, pp. 371-391
Cet article a éte moissonné depuis la source Heldermann Verlag
Four dimensional simply connected Lie groups admitting a pseudo K�hler metric are determined. The corresponding Lie algebras are modelled and the compatible pairs (J, ω) are parametrized up to complex isomorphism (where J is a complex structure and ω is a symplectic structure). Such structure gives rise to a pseudo-Riemannian metric g, for which J is a parallel. It is proved that most of these complex homogeneous spaces admit a compatible pseudo-K�hler Einstein metric. Ricci flat and flat metrics are determined. In particular Ricci flat unimodular pseudo-K�hler Lie groups are flat in dimension four. Other algebraic and geometric features are treated. A general construction of Ricci flat pseudo-K�hler structures in higher dimension on some affine Lie algebras is given. Walker and hypersymplectic metrics are compared.
Classification :
32Q15, 32Q20, 53C55, 32M10, 57S25, 22E25
Mots-clés : Pseudo-Kaehler metrics, Kaehler Lie algebras, invariant metrics, four dimensional Lie algebras
Mots-clés : Pseudo-Kaehler metrics, Kaehler Lie algebras, invariant metrics, four dimensional Lie algebras
@article{JLT_2006_16_2_JLT_2006_16_2_a9,
author = {G. P. Ovando },
title = {Invariant {Pseudo-K�hler} {Metrics} in {Dimension} {Four}},
journal = {Journal of Lie theory},
pages = {371--391},
year = {2006},
volume = {16},
number = {2},
url = {http://geodesic.mathdoc.fr/item/JLT_2006_16_2_JLT_2006_16_2_a9/}
}
G. P. Ovando . Invariant Pseudo-K�hler Metrics in Dimension Four. Journal of Lie theory, Tome 16 (2006) no. 2, pp. 371-391. http://geodesic.mathdoc.fr/item/JLT_2006_16_2_JLT_2006_16_2_a9/