Central Extensions of the Lie Algebra of Symplectic Vector Fields
Journal of Lie theory, Tome 16 (2006) no. 2, pp. 297-309.

Voir la notice de l'article provenant de la source Heldermann Verlag

\def\g{{\frak g}} \def\h{{\frak h}} For a perfect ideal $\h$ of the Lie algebra $\g$, the extendibility of continuous 2-cocycles from $\h$ to $\g$ is studied, especially for 2-cocycles of the form $\langle[X,\cdot],\cdot\rangle$ on $\h$ with $X\in\g$, when a $\g$-invariant symmetric bilinear form $\langle\cdot, \cdot\rangle$ on $\h$ is available. The results are then applied to extend continuous 2-cocycles from the Lie algebra of Hamiltonian vector fields to the Lie algebra of symplectic vector fields on a compact symplectic manifold.
Classification : 17B56, 17B66
Mots-clés : Central extension, symplectic and Hamiltonian vector field
@article{JLT_2006_16_2_JLT_2006_16_2_a5,
     author = {C. Vizman },
     title = {Central {Extensions} of the {Lie} {Algebra} of {Symplectic} {Vector} {Fields}},
     journal = {Journal of Lie theory},
     pages = {297--309},
     publisher = {mathdoc},
     volume = {16},
     number = {2},
     year = {2006},
     url = {http://geodesic.mathdoc.fr/item/JLT_2006_16_2_JLT_2006_16_2_a5/}
}
TY  - JOUR
AU  - C. Vizman 
TI  - Central Extensions of the Lie Algebra of Symplectic Vector Fields
JO  - Journal of Lie theory
PY  - 2006
SP  - 297
EP  - 309
VL  - 16
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/JLT_2006_16_2_JLT_2006_16_2_a5/
ID  - JLT_2006_16_2_JLT_2006_16_2_a5
ER  - 
%0 Journal Article
%A C. Vizman 
%T Central Extensions of the Lie Algebra of Symplectic Vector Fields
%J Journal of Lie theory
%D 2006
%P 297-309
%V 16
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/JLT_2006_16_2_JLT_2006_16_2_a5/
%F JLT_2006_16_2_JLT_2006_16_2_a5
C. Vizman . Central Extensions of the Lie Algebra of Symplectic Vector Fields. Journal of Lie theory, Tome 16 (2006) no. 2, pp. 297-309. http://geodesic.mathdoc.fr/item/JLT_2006_16_2_JLT_2006_16_2_a5/