Symmetry of Arthur Parameters under Aubert Involution
Journal of Lie theory, Tome 16 (2006) no. 2, pp. 251-27.

Voir la notice de l'article provenant de la source Heldermann Verlag

For a generic irreducible representation $\pi$ of the odd orthogonal group SO$(2n+1,F)$ over a $p$-adic field $F$, we compute the Aubert involution $\hat{\pi}$ and the corresponding $L$-parameter. We show that, among generic representations, only tempered representations are base points attached to $A$-parameters and prove that in this case the $A$-parameters of $\pi$ and $\hat{\pi}$ are symmetric. In addition, we consider $A$-parameters $\psi$ of SO$(2n+1, F)$ corresponding to certain nontempered representations and prove that $\psi$ and $\hat{\psi}$ are symmetric.
Classification : 22E50, 11F70
Mots-clés : Arthur parameters, Aubert involution, odd orthogonal groups over $p$-adic fields
@article{JLT_2006_16_2_JLT_2006_16_2_a3,
     author = {D. Ban },
     title = {Symmetry of {Arthur} {Parameters} under {Aubert} {Involution}},
     journal = {Journal of Lie theory},
     pages = {251--27},
     publisher = {mathdoc},
     volume = {16},
     number = {2},
     year = {2006},
     url = {http://geodesic.mathdoc.fr/item/JLT_2006_16_2_JLT_2006_16_2_a3/}
}
TY  - JOUR
AU  - D. Ban 
TI  - Symmetry of Arthur Parameters under Aubert Involution
JO  - Journal of Lie theory
PY  - 2006
SP  - 251
EP  - 27
VL  - 16
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/JLT_2006_16_2_JLT_2006_16_2_a3/
ID  - JLT_2006_16_2_JLT_2006_16_2_a3
ER  - 
%0 Journal Article
%A D. Ban 
%T Symmetry of Arthur Parameters under Aubert Involution
%J Journal of Lie theory
%D 2006
%P 251-27
%V 16
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/JLT_2006_16_2_JLT_2006_16_2_a3/
%F JLT_2006_16_2_JLT_2006_16_2_a3
D. Ban . Symmetry of Arthur Parameters under Aubert Involution. Journal of Lie theory, Tome 16 (2006) no. 2, pp. 251-27. http://geodesic.mathdoc.fr/item/JLT_2006_16_2_JLT_2006_16_2_a3/