Operator Kernels for Irreducible Unitary Representations of Solvable Exponential Lie Groups
Journal of Lie theory, Tome 16 (2006) no. 2, pp. 225-238.

Voir la notice de l'article provenant de la source Heldermann Verlag

Let $G$ be a connected, simply connected, exponential solvable Lie group. The irreducible unitary representations of $G$ may be obtained by the Kirillov-Bernat orbit method. Let $l \in \frak g^*$, $\frak p$ a Pukanszky polarization associated to $l$, $P= \exp {\frak p}$, $\chi_l$ the corresponding character of $P$ and $\pi_l = \hbox {\rm ind}_P^G \chi_l$ the associated unitary representation. We show through an example that not all the functions of ${\cal C}_c^{\infty}(G/P,G/P,\chi_l)$ (${\cal C}^{\infty}$-functions with compact support on $G/P \times G/P$ satisfying a certain covariance condition) are kernel functions of some operator of the form $\pi_l(f)$, $f\in L^1(G)$, even if the polarization is well chosen. This contradicts a result of H. Leptin [J. Reine Angew. Math. 494 (1998) 1--34]). But if the polarization $\frak p$ is an ideal of $\frak g$, then the result of Leptin is true, the corresponding retract from ${\cal C}^{\infty}_c(G/P,G/P,\chi_l)$ into $L^1(G)$ exists and a construction algorithm of the function $f$ may be indicated.
Classification : 43A20
Mots-clés : Irreducible unitary representation, kernel of an operator, retract
@article{JLT_2006_16_2_JLT_2006_16_2_a1,
     author = {J. Abdennadher and C. Molitor-Braun },
     title = {Operator {Kernels} for {Irreducible} {Unitary} {Representations} of {Solvable} {Exponential} {Lie} {Groups}},
     journal = {Journal of Lie theory},
     pages = {225--238},
     publisher = {mathdoc},
     volume = {16},
     number = {2},
     year = {2006},
     url = {http://geodesic.mathdoc.fr/item/JLT_2006_16_2_JLT_2006_16_2_a1/}
}
TY  - JOUR
AU  - J. Abdennadher
AU  - C. Molitor-Braun 
TI  - Operator Kernels for Irreducible Unitary Representations of Solvable Exponential Lie Groups
JO  - Journal of Lie theory
PY  - 2006
SP  - 225
EP  - 238
VL  - 16
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/JLT_2006_16_2_JLT_2006_16_2_a1/
ID  - JLT_2006_16_2_JLT_2006_16_2_a1
ER  - 
%0 Journal Article
%A J. Abdennadher
%A C. Molitor-Braun 
%T Operator Kernels for Irreducible Unitary Representations of Solvable Exponential Lie Groups
%J Journal of Lie theory
%D 2006
%P 225-238
%V 16
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/JLT_2006_16_2_JLT_2006_16_2_a1/
%F JLT_2006_16_2_JLT_2006_16_2_a1
J. Abdennadher; C. Molitor-Braun . Operator Kernels for Irreducible Unitary Representations of Solvable Exponential Lie Groups. Journal of Lie theory, Tome 16 (2006) no. 2, pp. 225-238. http://geodesic.mathdoc.fr/item/JLT_2006_16_2_JLT_2006_16_2_a1/