On Inverse Limits of Finite Dimensional Lie Groups
Journal of Lie theory, Tome 16 (2006) no. 2, pp. 221-224
Cet article a éte moissonné depuis la source Heldermann Verlag
We give a short proof of the Hofmann-Morris Theorem characterizing inverse limits of finite dimensional Lie groups [see K. H. Hofmann and S. A. Morris, Projective limits of finite dimensional Lie groups, Proc. Lond. Math. Soc. 87 (2003) 647--676, Theorem 4.7]. The proof depends on the Gleason-Palais characterization of finite dimensional Lie groups [see A. Gleason and R. Palais, On a class of transformation groups, Amer. J. Math. 79 (1957) 631--648, Theorem 7.2].
Classification :
22A05
Mots-clés : Finite dimensional Lie group, inverse limit
Mots-clés : Finite dimensional Lie group, inverse limit
@article{JLT_2006_16_2_JLT_2006_16_2_a0,
author = {A. A. George Michael },
title = {On {Inverse} {Limits} of {Finite} {Dimensional} {Lie} {Groups}},
journal = {Journal of Lie theory},
pages = {221--224},
year = {2006},
volume = {16},
number = {2},
url = {http://geodesic.mathdoc.fr/item/JLT_2006_16_2_JLT_2006_16_2_a0/}
}
A. A. George Michael . On Inverse Limits of Finite Dimensional Lie Groups. Journal of Lie theory, Tome 16 (2006) no. 2, pp. 221-224. http://geodesic.mathdoc.fr/item/JLT_2006_16_2_JLT_2006_16_2_a0/