On Inverse Limits of Finite Dimensional Lie Groups
Journal of Lie theory, Tome 16 (2006) no. 2, pp. 221-224.

Voir la notice de l'article provenant de la source Heldermann Verlag

We give a short proof of the Hofmann-Morris Theorem characterizing inverse limits of finite dimensional Lie groups [see K. H. Hofmann and S. A. Morris, Projective limits of finite dimensional Lie groups, Proc. Lond. Math. Soc. 87 (2003) 647--676, Theorem 4.7]. The proof depends on the Gleason-Palais characterization of finite dimensional Lie groups [see A. Gleason and R. Palais, On a class of transformation groups, Amer. J. Math. 79 (1957) 631--648, Theorem 7.2].
Classification : 22A05
Mots-clés : Finite dimensional Lie group, inverse limit
@article{JLT_2006_16_2_JLT_2006_16_2_a0,
     author = {A. A. George Michael },
     title = {On {Inverse} {Limits} of {Finite} {Dimensional} {Lie} {Groups}},
     journal = {Journal of Lie theory},
     pages = {221--224},
     publisher = {mathdoc},
     volume = {16},
     number = {2},
     year = {2006},
     url = {http://geodesic.mathdoc.fr/item/JLT_2006_16_2_JLT_2006_16_2_a0/}
}
TY  - JOUR
AU  - A. A. George Michael 
TI  - On Inverse Limits of Finite Dimensional Lie Groups
JO  - Journal of Lie theory
PY  - 2006
SP  - 221
EP  - 224
VL  - 16
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/JLT_2006_16_2_JLT_2006_16_2_a0/
ID  - JLT_2006_16_2_JLT_2006_16_2_a0
ER  - 
%0 Journal Article
%A A. A. George Michael 
%T On Inverse Limits of Finite Dimensional Lie Groups
%J Journal of Lie theory
%D 2006
%P 221-224
%V 16
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/JLT_2006_16_2_JLT_2006_16_2_a0/
%F JLT_2006_16_2_JLT_2006_16_2_a0
A. A. George Michael . On Inverse Limits of Finite Dimensional Lie Groups. Journal of Lie theory, Tome 16 (2006) no. 2, pp. 221-224. http://geodesic.mathdoc.fr/item/JLT_2006_16_2_JLT_2006_16_2_a0/