Central Extension, Derivations and Automorphism Group for Lie Algebras Arising from the 2-Dimensional Torus
Journal of Lie theory, Tome 16 (2006) no. 1, pp. 139-153.

Voir la notice de l'article provenant de la source Heldermann Verlag

Let $A={\Bbb C}[x_{1}^{\pm1},x_{2}^{\pm1}]$ be the ring of Laurant polynomials and $B$ the set of skew derivations of $A$. Set $\tilde{L}=A \oplus B$. In this paper, we study the automorphism group, derivations and universal central extension of the derived Lie subalgebra of $\tilde{L}$.
Classification : 17B05, 17B68
Mots-clés : Virasoro algebra, central extension, automorphism group
@article{JLT_2006_16_1_JLT_2006_16_1_a11,
     author = {M. Xue and W. Lin and S. Tan },
     title = {Central {Extension,} {Derivations} and {Automorphism} {Group} for {Lie} {Algebras} {Arising} from the {2-Dimensional} {Torus}},
     journal = {Journal of Lie theory},
     pages = {139--153},
     publisher = {mathdoc},
     volume = {16},
     number = {1},
     year = {2006},
     url = {http://geodesic.mathdoc.fr/item/JLT_2006_16_1_JLT_2006_16_1_a11/}
}
TY  - JOUR
AU  - M. Xue
AU  - W. Lin
AU  - S. Tan 
TI  - Central Extension, Derivations and Automorphism Group for Lie Algebras Arising from the 2-Dimensional Torus
JO  - Journal of Lie theory
PY  - 2006
SP  - 139
EP  - 153
VL  - 16
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/JLT_2006_16_1_JLT_2006_16_1_a11/
ID  - JLT_2006_16_1_JLT_2006_16_1_a11
ER  - 
%0 Journal Article
%A M. Xue
%A W. Lin
%A S. Tan 
%T Central Extension, Derivations and Automorphism Group for Lie Algebras Arising from the 2-Dimensional Torus
%J Journal of Lie theory
%D 2006
%P 139-153
%V 16
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/JLT_2006_16_1_JLT_2006_16_1_a11/
%F JLT_2006_16_1_JLT_2006_16_1_a11
M. Xue; W. Lin; S. Tan . Central Extension, Derivations and Automorphism Group for Lie Algebras Arising from the 2-Dimensional Torus. Journal of Lie theory, Tome 16 (2006) no. 1, pp. 139-153. http://geodesic.mathdoc.fr/item/JLT_2006_16_1_JLT_2006_16_1_a11/