On Prime Z-graded Lie Algebras of Growth One
Journal of Lie theory, Tome 15 (2005) no. 2, pp. 505-52
Voir la notice de l'article provenant de la source Heldermann Verlag
We will give the structure of $\mathbb Z$-graded prime nondegenerate algebras $L = \sum_{i\in\mathbb Z} L_i$ containing the Virasoro algebra and having the dimensions of the homogeneous components, $\dim L_i$, uniformely bounded.
Classification :
17B60, 17B70, 17C50
Mots-clés : Z-graded Lie algebra, strongly PI, prime, nondegenerate, Virasoro algebra, loop algebra, growth, Jordan pair
Mots-clés : Z-graded Lie algebra, strongly PI, prime, nondegenerate, Virasoro algebra, loop algebra, growth, Jordan pair
@article{JLT_2005_15_2_JLT_2005_15_2_a8,
author = {C. Mart�nez },
title = {On {Prime} {Z-graded} {Lie} {Algebras} of {Growth} {One}},
journal = {Journal of Lie theory},
pages = {505--52},
publisher = {mathdoc},
volume = {15},
number = {2},
year = {2005},
url = {http://geodesic.mathdoc.fr/item/JLT_2005_15_2_JLT_2005_15_2_a8/}
}
C. Mart�nez . On Prime Z-graded Lie Algebras of Growth One. Journal of Lie theory, Tome 15 (2005) no. 2, pp. 505-52. http://geodesic.mathdoc.fr/item/JLT_2005_15_2_JLT_2005_15_2_a8/