Spinor Types in Infinite Dimensions
Journal of Lie theory, Tome 15 (2005) no. 2, pp. 457-495
Cet article a éte moissonné depuis la source Heldermann Verlag
The Cartan-Dirac classification of spinors into types is generalized to infinite dimensions. The main conclusion is that, in the statistical interpretation where such spinors are functions on $\Bbb Z_2^\infty$, any real or quaternionic structure involves switching zeroes and ones. There results a maze of equivalence classes of each type. Some examples are shown in $L^2({\Bbb T})$. The classification of spinors leads to a parametrization of certain non-associative algebras introduced speculatively by Kaplansky.
Classification :
81R10, 15A66
Mots-clés : Spinors, representations of the CAR, division algebras
Mots-clés : Spinors, representations of the CAR, division algebras
@article{JLT_2005_15_2_JLT_2005_15_2_a6,
author = {E. Galina and A. Kaplan and L. Saal },
title = {Spinor {Types} in {Infinite} {Dimensions}},
journal = {Journal of Lie theory},
pages = {457--495},
year = {2005},
volume = {15},
number = {2},
url = {http://geodesic.mathdoc.fr/item/JLT_2005_15_2_JLT_2005_15_2_a6/}
}
E. Galina; A. Kaplan; L. Saal . Spinor Types in Infinite Dimensions. Journal of Lie theory, Tome 15 (2005) no. 2, pp. 457-495. http://geodesic.mathdoc.fr/item/JLT_2005_15_2_JLT_2005_15_2_a6/