The Weak Paley-Wiener Property for Group Extensions
Journal of Lie theory, Tome 15 (2005) no. 2, pp. 429-446
Cet article a éte moissonné depuis la source Heldermann Verlag
The paper studies weak Paley-Wiener properties for group extensions by use of Mackey's theory. The main theorem establishes sufficient conditions on the dual action to ensure that the group has the weak Paley-Wiener property. The theorem applies to yield the weak Paley-Wiener property for large classes of simply connected, connected solvable Lie groups (including exponential Lie groups), but also criteria for non-unimodular groups or motion groups.
Classification :
43A30, 22E27
Mots-clés : Weak Paley-Wiener property, operator-valued Fourier transform, Mackey's theory
Mots-clés : Weak Paley-Wiener property, operator-valued Fourier transform, Mackey's theory
@article{JLT_2005_15_2_JLT_2005_15_2_a4,
author = {H. F�hr },
title = {The {Weak} {Paley-Wiener} {Property} for {Group} {Extensions}},
journal = {Journal of Lie theory},
pages = {429--446},
year = {2005},
volume = {15},
number = {2},
url = {http://geodesic.mathdoc.fr/item/JLT_2005_15_2_JLT_2005_15_2_a4/}
}
H. F�hr . The Weak Paley-Wiener Property for Group Extensions. Journal of Lie theory, Tome 15 (2005) no. 2, pp. 429-446. http://geodesic.mathdoc.fr/item/JLT_2005_15_2_JLT_2005_15_2_a4/