Naturally Graded p-Filiform Lie Algebras in Arbitrary Finite Dimension
Journal of Lie theory, Tome 15 (2005) no. 2, pp. 379-391
Cet article a éte moissonné depuis la source Heldermann Verlag
The present paper offers the classification of naturally graded $p$-filiform Lie algebras in arbitrary finite dimension $n$. For sufficiently high $n$, ($n \geq \max \{3p-1,p+8\}$), and for all admissible value of $p$ the results are a generalization of Vergne's in case of filiform Lie algebras [Vergne, M., Cohomologie des alg\`ebres de Lie nilpotentes. Application \`a l'\'etude de la variet\'e des alg\`ebres de Lie nilpotentes, Bull. Soc. Math. France 98 (1970) 81--116].
Classification :
22E60, 17B30, 17B70
Mots-clés : Nilpotent Lie algebra, filiform, naturally graded
Mots-clés : Nilpotent Lie algebra, filiform, naturally graded
@article{JLT_2005_15_2_JLT_2005_15_2_a1,
author = {J. M. Cabezas and E. Pastor },
title = {Naturally {Graded} {p-Filiform} {Lie} {Algebras} in {Arbitrary} {Finite} {Dimension}},
journal = {Journal of Lie theory},
pages = {379--391},
year = {2005},
volume = {15},
number = {2},
url = {http://geodesic.mathdoc.fr/item/JLT_2005_15_2_JLT_2005_15_2_a1/}
}
J. M. Cabezas; E. Pastor . Naturally Graded p-Filiform Lie Algebras in Arbitrary Finite Dimension. Journal of Lie theory, Tome 15 (2005) no. 2, pp. 379-391. http://geodesic.mathdoc.fr/item/JLT_2005_15_2_JLT_2005_15_2_a1/