Berezin-Toeplitz Quantization on the Schwartz Space of Bounded Symmetric Domains
Journal of Lie theory, Tome 15 (2005) no. 1, pp. 27-5.

Voir la notice de l'article provenant de la source Heldermann Verlag

Borthwick, Lesniewski and Upmeier [Nonperturbative deformation quantization of Cartan domains, J. Funct. Anal. 113 (1993) 153--176] proved that on any bounded symmetric domain (Hermitian symmetric space of non-compact type), for any compactly supported smooth functions f and g, the product of the Toeplitz operators TfTg on the standard weighted Bergman spaces can be asymptotically expanded into a series of another Toeplitz operators multiplied by decreasing powers of the Wallach parameter ν. This is the Berezin-Toeplitz quantization.
Classification : 22E30, 43A85, 47B35, 53D55
Mots-clés : Berezin-Toeplitz quantization, bounded symmetric domain, Schwartz space
@article{JLT_2005_15_1_JLT_2005_15_1_a2,
     author = {M. Englis },
     title = {Berezin-Toeplitz {Quantization} on the {Schwartz} {Space} of {Bounded} {Symmetric} {Domains}},
     journal = {Journal of Lie theory},
     pages = {27--5},
     publisher = {mathdoc},
     volume = {15},
     number = {1},
     year = {2005},
     url = {http://geodesic.mathdoc.fr/item/JLT_2005_15_1_JLT_2005_15_1_a2/}
}
TY  - JOUR
AU  - M. Englis 
TI  - Berezin-Toeplitz Quantization on the Schwartz Space of Bounded Symmetric Domains
JO  - Journal of Lie theory
PY  - 2005
SP  - 27
EP  - 5
VL  - 15
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/JLT_2005_15_1_JLT_2005_15_1_a2/
ID  - JLT_2005_15_1_JLT_2005_15_1_a2
ER  - 
%0 Journal Article
%A M. Englis 
%T Berezin-Toeplitz Quantization on the Schwartz Space of Bounded Symmetric Domains
%J Journal of Lie theory
%D 2005
%P 27-5
%V 15
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/JLT_2005_15_1_JLT_2005_15_1_a2/
%F JLT_2005_15_1_JLT_2005_15_1_a2
M. Englis . Berezin-Toeplitz Quantization on the Schwartz Space of Bounded Symmetric Domains. Journal of Lie theory, Tome 15 (2005) no. 1, pp. 27-5. http://geodesic.mathdoc.fr/item/JLT_2005_15_1_JLT_2005_15_1_a2/