Injectivity of the Double Fibration Transform for Cycle Spaces of Flag Domains
Journal of Lie theory, Tome 14 (2004) no. 2, pp. 509-522
Cet article a éte moissonné depuis la source Heldermann Verlag
The basic setup consists of a complex flag manifold $Z=G/Q$ where $G$ is a complex semisimple Lie group and $Q$ is a parabolic subgroup, an open orbit $D = G_0(z) \subset Z$ where $G_0$ is a real form of $G$, and a $G_0$--homogeneous holomorphic vector bundle $\mathbb E \to D$. The topic here is the double fibration transform ${\cal P}: H^q(D; {\cal O}(\mathbb E)) \to H^0({\cal M}_D;{\cal O}(\mathbb E'))$ where $q$ is given by the geometry of $D$, ${\cal M}_D$ is the cycle space of $D$, and $\mathbb E' \to {\cal M}_D$ is a certain naturally derived holomorphic vector bundle. Schubert intersection theory is used to show that ${\cal P}$ is injective whenever $\mathbb E$ is sufficiently negative.
@article{JLT_2004_14_2_JLT_2004_14_2_a8,
author = {A. T. Huckleberry and J. A. Wolf},
title = {Injectivity of the {Double} {Fibration} {Transform} for {Cycle} {Spaces} of {Flag} {Domains}},
journal = {Journal of Lie theory},
pages = {509--522},
year = {2004},
volume = {14},
number = {2},
url = {http://geodesic.mathdoc.fr/item/JLT_2004_14_2_JLT_2004_14_2_a8/}
}
TY - JOUR AU - A. T. Huckleberry AU - J. A. Wolf TI - Injectivity of the Double Fibration Transform for Cycle Spaces of Flag Domains JO - Journal of Lie theory PY - 2004 SP - 509 EP - 522 VL - 14 IS - 2 UR - http://geodesic.mathdoc.fr/item/JLT_2004_14_2_JLT_2004_14_2_a8/ ID - JLT_2004_14_2_JLT_2004_14_2_a8 ER -
A. T. Huckleberry; J. A. Wolf. Injectivity of the Double Fibration Transform for Cycle Spaces of Flag Domains. Journal of Lie theory, Tome 14 (2004) no. 2, pp. 509-522. http://geodesic.mathdoc.fr/item/JLT_2004_14_2_JLT_2004_14_2_a8/