Injectivity of the Double Fibration Transform for Cycle Spaces of Flag Domains
Journal of Lie theory, Tome 14 (2004) no. 2, pp. 509-522.

Voir la notice de l'article provenant de la source Heldermann Verlag

The basic setup consists of a complex flag manifold $Z=G/Q$ where $G$ is a complex semisimple Lie group and $Q$ is a parabolic subgroup, an open orbit $D = G_0(z) \subset Z$ where $G_0$ is a real form of $G$, and a $G_0$--homogeneous holomorphic vector bundle $\mathbb E \to D$. The topic here is the double fibration transform ${\cal P}: H^q(D; {\cal O}(\mathbb E)) \to H^0({\cal M}_D;{\cal O}(\mathbb E'))$ where $q$ is given by the geometry of $D$, ${\cal M}_D$ is the cycle space of $D$, and $\mathbb E' \to {\cal M}_D$ is a certain naturally derived holomorphic vector bundle. Schubert intersection theory is used to show that ${\cal P}$ is injective whenever $\mathbb E$ is sufficiently negative.
@article{JLT_2004_14_2_JLT_2004_14_2_a8,
     author = {A. T. Huckleberry and J. A. Wolf},
     title = {Injectivity of the {Double} {Fibration} {Transform} for {Cycle} {Spaces} of {Flag} {Domains}},
     journal = {Journal of Lie theory},
     pages = {509--522},
     publisher = {mathdoc},
     volume = {14},
     number = {2},
     year = {2004},
     url = {http://geodesic.mathdoc.fr/item/JLT_2004_14_2_JLT_2004_14_2_a8/}
}
TY  - JOUR
AU  - A. T. Huckleberry
AU  - J. A. Wolf
TI  - Injectivity of the Double Fibration Transform for Cycle Spaces of Flag Domains
JO  - Journal of Lie theory
PY  - 2004
SP  - 509
EP  - 522
VL  - 14
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/JLT_2004_14_2_JLT_2004_14_2_a8/
ID  - JLT_2004_14_2_JLT_2004_14_2_a8
ER  - 
%0 Journal Article
%A A. T. Huckleberry
%A J. A. Wolf
%T Injectivity of the Double Fibration Transform for Cycle Spaces of Flag Domains
%J Journal of Lie theory
%D 2004
%P 509-522
%V 14
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/JLT_2004_14_2_JLT_2004_14_2_a8/
%F JLT_2004_14_2_JLT_2004_14_2_a8
A. T. Huckleberry; J. A. Wolf. Injectivity of the Double Fibration Transform for Cycle Spaces of Flag Domains. Journal of Lie theory, Tome 14 (2004) no. 2, pp. 509-522. http://geodesic.mathdoc.fr/item/JLT_2004_14_2_JLT_2004_14_2_a8/