On the Principal Bundles over a Flag Manifold
Journal of Lie theory, Tome 14 (2004) no. 2, pp. 569-581
Cet article a éte moissonné depuis la source Heldermann Verlag
Let $P$ be a parabolic subgroup of a semisimple simply connected linear algebraic group $G$ over $\mathbb C$ and $\rho$ an irreducible homomorphism from $P$ to a complex reductive group $H$. We show that the associated principal $H$--bundle over $G/P$, associated for $\rho$ to the principal $P$--bundle defined by the quotient map $G\, \longrightarrow\, G/P$, is stable. We describe the Harder--Narasimhan reduction of the $G$--bundle over $G/P$ obtained using the composition $P\, \longrightarrow\, L(P)\, \longrightarrow\, G$, where $L(P)$ is the Levi factor of $P$.
@article{JLT_2004_14_2_JLT_2004_14_2_a14,
author = {H. Azad and I. Biswas},
title = {On the {Principal} {Bundles} over a {Flag} {Manifold}},
journal = {Journal of Lie theory},
pages = {569--581},
year = {2004},
volume = {14},
number = {2},
url = {http://geodesic.mathdoc.fr/item/JLT_2004_14_2_JLT_2004_14_2_a14/}
}
H. Azad; I. Biswas. On the Principal Bundles over a Flag Manifold. Journal of Lie theory, Tome 14 (2004) no. 2, pp. 569-581. http://geodesic.mathdoc.fr/item/JLT_2004_14_2_JLT_2004_14_2_a14/