Stable Affine Models for Algebraic Group Actions
Journal of Lie theory, Tome 14 (2004) no. 2, pp. 563-568.

Voir la notice de l'article provenant de la source Heldermann Verlag

Let G be a reductive linear algebraic group defined over an algebraically closed base field k of characteristic zero. A G-variety is an algebraic variety with a regular action of G, defined over k. An affine G-variety is called stable if its points in general position have closed G-orbits. We give a simple necessary and sufficient condition for a G-variety to have a stable affine birational model.
Classification : 14L30
Mots-clés : Algebraic group, group action, stable action, affine model
@article{JLT_2004_14_2_JLT_2004_14_2_a13,
     author = {Z. Reichstein and N. Vonessen},
     title = {Stable {Affine} {Models} for {Algebraic} {Group} {Actions}},
     journal = {Journal of Lie theory},
     pages = {563--568},
     publisher = {mathdoc},
     volume = {14},
     number = {2},
     year = {2004},
     url = {http://geodesic.mathdoc.fr/item/JLT_2004_14_2_JLT_2004_14_2_a13/}
}
TY  - JOUR
AU  - Z. Reichstein
AU  - N. Vonessen
TI  - Stable Affine Models for Algebraic Group Actions
JO  - Journal of Lie theory
PY  - 2004
SP  - 563
EP  - 568
VL  - 14
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/JLT_2004_14_2_JLT_2004_14_2_a13/
ID  - JLT_2004_14_2_JLT_2004_14_2_a13
ER  - 
%0 Journal Article
%A Z. Reichstein
%A N. Vonessen
%T Stable Affine Models for Algebraic Group Actions
%J Journal of Lie theory
%D 2004
%P 563-568
%V 14
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/JLT_2004_14_2_JLT_2004_14_2_a13/
%F JLT_2004_14_2_JLT_2004_14_2_a13
Z. Reichstein; N. Vonessen. Stable Affine Models for Algebraic Group Actions. Journal of Lie theory, Tome 14 (2004) no. 2, pp. 563-568. http://geodesic.mathdoc.fr/item/JLT_2004_14_2_JLT_2004_14_2_a13/