Stable Affine Models for Algebraic Group Actions
Journal of Lie theory, Tome 14 (2004) no. 2, pp. 563-568
Cet article a éte moissonné depuis la source Heldermann Verlag
Let G be a reductive linear algebraic group defined over an algebraically closed base field k of characteristic zero. A G-variety is an algebraic variety with a regular action of G, defined over k. An affine G-variety is called stable if its points in general position have closed G-orbits. We give a simple necessary and sufficient condition for a G-variety to have a stable affine birational model.
Classification :
14L30
Mots-clés : Algebraic group, group action, stable action, affine model
Mots-clés : Algebraic group, group action, stable action, affine model
@article{JLT_2004_14_2_JLT_2004_14_2_a13,
author = {Z. Reichstein and N. Vonessen},
title = {Stable {Affine} {Models} for {Algebraic} {Group} {Actions}},
journal = {Journal of Lie theory},
pages = {563--568},
year = {2004},
volume = {14},
number = {2},
url = {http://geodesic.mathdoc.fr/item/JLT_2004_14_2_JLT_2004_14_2_a13/}
}
Z. Reichstein; N. Vonessen. Stable Affine Models for Algebraic Group Actions. Journal of Lie theory, Tome 14 (2004) no. 2, pp. 563-568. http://geodesic.mathdoc.fr/item/JLT_2004_14_2_JLT_2004_14_2_a13/