On Quasi-Poisson Homogeneous Spaces of Quasi-Poisson Lie Groups
Journal of Lie theory, Tome 14 (2004) no. 2, pp. 543-554
Cet article a éte moissonné depuis la source Heldermann Verlag
Drinfeld showed that if G is a Poisson Lie group with corresponding Lie bialgebra g, then the isomorphism classes of Poisson homogeneous G-spaces are essentially in a 1-1 correspondence with the G-orbits of Lagrangian subalgebras in g � g*. The main goal of this paper is to generalize this result to the quasi-Poisson case. We also study the behavior of quasi-Poisson homogeneous spaces under twisting. Some examples of quasi-Poisson homogeneous spaces and corresponding Lagrangian subalgebras are also provided.
@article{JLT_2004_14_2_JLT_2004_14_2_a11,
author = {E. Karolinsky and K. Muzykin},
title = {On {Quasi-Poisson} {Homogeneous} {Spaces} of {Quasi-Poisson} {Lie} {Groups}},
journal = {Journal of Lie theory},
pages = {543--554},
year = {2004},
volume = {14},
number = {2},
url = {http://geodesic.mathdoc.fr/item/JLT_2004_14_2_JLT_2004_14_2_a11/}
}
E. Karolinsky; K. Muzykin. On Quasi-Poisson Homogeneous Spaces of Quasi-Poisson Lie Groups. Journal of Lie theory, Tome 14 (2004) no. 2, pp. 543-554. http://geodesic.mathdoc.fr/item/JLT_2004_14_2_JLT_2004_14_2_a11/