Classification of Spherical Nilpotent Orbits in Complex Symmetric Space
Journal of Lie theory, Tome 14 (2004) no. 2, pp. 339-37.

Voir la notice de l'article provenant de la source Heldermann Verlag

Let $G$ be the adjoint group of the simple real Lie algebra $\g$, and let $K_{{}_{\bf C}}~\rightarrow~{{\rm Aut}({\frak p}_{{}_{\bf C}})}$ be the complexified isotropy representation at the identity coset of the corresponding symmetric space. We classify the spherical nilpotent $K_{{}_{\bf C}}$ orbits in ${\frak p}_{{}_{\bf C}}$.
@article{JLT_2004_14_2_JLT_2004_14_2_a1,
     author = {D. R. King},
     title = {Classification of {Spherical} {Nilpotent} {Orbits} in {Complex} {Symmetric} {Space}},
     journal = {Journal of Lie theory},
     pages = {339--37},
     publisher = {mathdoc},
     volume = {14},
     number = {2},
     year = {2004},
     url = {http://geodesic.mathdoc.fr/item/JLT_2004_14_2_JLT_2004_14_2_a1/}
}
TY  - JOUR
AU  - D. R. King
TI  - Classification of Spherical Nilpotent Orbits in Complex Symmetric Space
JO  - Journal of Lie theory
PY  - 2004
SP  - 339
EP  - 37
VL  - 14
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/JLT_2004_14_2_JLT_2004_14_2_a1/
ID  - JLT_2004_14_2_JLT_2004_14_2_a1
ER  - 
%0 Journal Article
%A D. R. King
%T Classification of Spherical Nilpotent Orbits in Complex Symmetric Space
%J Journal of Lie theory
%D 2004
%P 339-37
%V 14
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/JLT_2004_14_2_JLT_2004_14_2_a1/
%F JLT_2004_14_2_JLT_2004_14_2_a1
D. R. King. Classification of Spherical Nilpotent Orbits in Complex Symmetric Space. Journal of Lie theory, Tome 14 (2004) no. 2, pp. 339-37. http://geodesic.mathdoc.fr/item/JLT_2004_14_2_JLT_2004_14_2_a1/