Tits Geometry, Arithmetic Groups, and the Proof of a Conjecture of Siegel
Journal of Lie theory, Tome 14 (2004) no. 2, pp. 317-338.

Voir la notice de l'article provenant de la source Heldermann Verlag

Let $X = G/K$ be a Riemannian symmetric space of noncompact type and of rank $\geq 2$. An irreducible, non-uniform lattice $\Gamma\subset G$ in the isometry group of $X$ is arithmetic and gives rise to a locally symmetric space $V=\Gamma\backslash X$. Let $\pi:X\rightarrow V$ be the canonical projection. Reduction theory for arithmetic groups provides a dissection $V=\coprod_{i=1}^k \pi(X_i)$ with $\pi(X_0)$ compact and such that the restiction of $\pi$ to $X_i$ is injective for each $i$. In this paper we complete reduction theory by focusing on metric properties of the sets $X_i$. We detect subsets $C_i$ of $X_i$ (${\Bbb Q}$--Weyl chambers) such that $\pi_{\mid C_i}$ is an isometry and such that $C_i$ is a net in $X_i$. This result is then used to prove a conjecture of C.L. Siegel. We also show that $V$ is quasi-isometric to the Euclidean cone over a finite simplicial complex and study the Tits geometry of $V$.
@article{JLT_2004_14_2_JLT_2004_14_2_a0,
     author = {E. Leuzinger},
     title = {Tits {Geometry,} {Arithmetic} {Groups,} and the {Proof} of a {Conjecture} of {Siegel}},
     journal = {Journal of Lie theory},
     pages = {317--338},
     publisher = {mathdoc},
     volume = {14},
     number = {2},
     year = {2004},
     url = {http://geodesic.mathdoc.fr/item/JLT_2004_14_2_JLT_2004_14_2_a0/}
}
TY  - JOUR
AU  - E. Leuzinger
TI  - Tits Geometry, Arithmetic Groups, and the Proof of a Conjecture of Siegel
JO  - Journal of Lie theory
PY  - 2004
SP  - 317
EP  - 338
VL  - 14
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/JLT_2004_14_2_JLT_2004_14_2_a0/
ID  - JLT_2004_14_2_JLT_2004_14_2_a0
ER  - 
%0 Journal Article
%A E. Leuzinger
%T Tits Geometry, Arithmetic Groups, and the Proof of a Conjecture of Siegel
%J Journal of Lie theory
%D 2004
%P 317-338
%V 14
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/JLT_2004_14_2_JLT_2004_14_2_a0/
%F JLT_2004_14_2_JLT_2004_14_2_a0
E. Leuzinger. Tits Geometry, Arithmetic Groups, and the Proof of a Conjecture of Siegel. Journal of Lie theory, Tome 14 (2004) no. 2, pp. 317-338. http://geodesic.mathdoc.fr/item/JLT_2004_14_2_JLT_2004_14_2_a0/