Invariant Control Sets on Flag Manifolds and Ideal Boundaries of Symmetric Spaces
Journal of Lie theory, Tome 13 (2003) no. 2, pp. 465-479
Voir la notice de l'article provenant de la source Heldermann Verlag
Let $G$ be a semisimple real Lie group of non-compact type, $K$ a maximal compact subgroup and $S\subseteq G$ a semigroup with nonempty interior. We consider the ideal boundary $\partial_{\infty}(G/K)$ of the associated symmetric space and the flag manifolds $G/P_{\Theta}$. We prove that the asymptotic image $\partial_{\infty} (Sx_{0})\subseteq \partial_{\infty}(G/K)$, where $x_{0}\in G/K$ is any given point, is the maximal invariant control set of $S$ in $\partial_{\infty}(G/K)$. Moreover there is a surjective projection $$\pi\colon\partial_{\infty}(Sx_{0}) \rightarrow \bigcup\limits_{\Theta\subseteq\Sigma}C_{\Theta},$$ where $C_{\Theta}$ is the maximal invariant control set for the action of $S$ in the flag manifold $G/P_{\Theta}$, with $P_{\Theta}$ a parabolic subgroup. The points that project over $C_{\Theta}$ are exactly the points of type $\Theta$ in $\partial_{\infty}(Sx_{0})$ (in the sense of the type of a cell in a Tits Building).
Classification :
20M20, 93B29, 22E46
Mots-clés : Semigroups, semi-simple Lie groups, control sets, ideal boundary
Mots-clés : Semigroups, semi-simple Lie groups, control sets, ideal boundary
@article{JLT_2003_13_2_JLT_2003_13_2_a9,
author = {M. Firer and O. G. do Rocio },
title = {Invariant {Control} {Sets} on {Flag} {Manifolds} and {Ideal} {Boundaries} of {Symmetric} {Spaces}},
journal = {Journal of Lie theory},
pages = {465--479},
publisher = {mathdoc},
volume = {13},
number = {2},
year = {2003},
url = {http://geodesic.mathdoc.fr/item/JLT_2003_13_2_JLT_2003_13_2_a9/}
}
TY - JOUR AU - M. Firer AU - O. G. do Rocio TI - Invariant Control Sets on Flag Manifolds and Ideal Boundaries of Symmetric Spaces JO - Journal of Lie theory PY - 2003 SP - 465 EP - 479 VL - 13 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/JLT_2003_13_2_JLT_2003_13_2_a9/ ID - JLT_2003_13_2_JLT_2003_13_2_a9 ER -
%0 Journal Article %A M. Firer %A O. G. do Rocio %T Invariant Control Sets on Flag Manifolds and Ideal Boundaries of Symmetric Spaces %J Journal of Lie theory %D 2003 %P 465-479 %V 13 %N 2 %I mathdoc %U http://geodesic.mathdoc.fr/item/JLT_2003_13_2_JLT_2003_13_2_a9/ %F JLT_2003_13_2_JLT_2003_13_2_a9
M. Firer; O. G. do Rocio . Invariant Control Sets on Flag Manifolds and Ideal Boundaries of Symmetric Spaces. Journal of Lie theory, Tome 13 (2003) no. 2, pp. 465-479. http://geodesic.mathdoc.fr/item/JLT_2003_13_2_JLT_2003_13_2_a9/