On the Volume of Unit Vector Fields on a Compact Semisimple Lie Group
Journal of Lie theory, Tome 13 (2003) no. 2, pp. 457-464
Voir la notice de l'article provenant de la source Heldermann Verlag
Let G be a compact connected semisimple Lie group endowed with a bi-invariant Riemannian metric. We prove that maximal singular unit vector fields on G are minimal, that is, they are critical points of the volume functional on unit vector fields on G. Besides, we give a lower bound for the number of nonequivalent minimal unit vector fields on G.
@article{JLT_2003_13_2_JLT_2003_13_2_a8,
author = {M. Salvai },
title = {On the {Volume} of {Unit} {Vector} {Fields} on a {Compact} {Semisimple} {Lie} {Group}},
journal = {Journal of Lie theory},
pages = {457--464},
publisher = {mathdoc},
volume = {13},
number = {2},
year = {2003},
url = {http://geodesic.mathdoc.fr/item/JLT_2003_13_2_JLT_2003_13_2_a8/}
}
M. Salvai . On the Volume of Unit Vector Fields on a Compact Semisimple Lie Group. Journal of Lie theory, Tome 13 (2003) no. 2, pp. 457-464. http://geodesic.mathdoc.fr/item/JLT_2003_13_2_JLT_2003_13_2_a8/