On the Volume of Unit Vector Fields on a Compact Semisimple Lie Group
Journal of Lie theory, Tome 13 (2003) no. 2, pp. 457-464.

Voir la notice de l'article provenant de la source Heldermann Verlag

Let G be a compact connected semisimple Lie group endowed with a bi-invariant Riemannian metric. We prove that maximal singular unit vector fields on G are minimal, that is, they are critical points of the volume functional on unit vector fields on G. Besides, we give a lower bound for the number of nonequivalent minimal unit vector fields on G.
@article{JLT_2003_13_2_JLT_2003_13_2_a8,
     author = {M. Salvai },
     title = {On the {Volume} of {Unit} {Vector} {Fields} on a {Compact} {Semisimple} {Lie} {Group}},
     journal = {Journal of Lie theory},
     pages = {457--464},
     publisher = {mathdoc},
     volume = {13},
     number = {2},
     year = {2003},
     url = {http://geodesic.mathdoc.fr/item/JLT_2003_13_2_JLT_2003_13_2_a8/}
}
TY  - JOUR
AU  - M. Salvai 
TI  - On the Volume of Unit Vector Fields on a Compact Semisimple Lie Group
JO  - Journal of Lie theory
PY  - 2003
SP  - 457
EP  - 464
VL  - 13
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/JLT_2003_13_2_JLT_2003_13_2_a8/
ID  - JLT_2003_13_2_JLT_2003_13_2_a8
ER  - 
%0 Journal Article
%A M. Salvai 
%T On the Volume of Unit Vector Fields on a Compact Semisimple Lie Group
%J Journal of Lie theory
%D 2003
%P 457-464
%V 13
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/JLT_2003_13_2_JLT_2003_13_2_a8/
%F JLT_2003_13_2_JLT_2003_13_2_a8
M. Salvai . On the Volume of Unit Vector Fields on a Compact Semisimple Lie Group. Journal of Lie theory, Tome 13 (2003) no. 2, pp. 457-464. http://geodesic.mathdoc.fr/item/JLT_2003_13_2_JLT_2003_13_2_a8/