On a Diffeological Group Realization of Certain Generalized Symmetrizable Kac-Moody Lie Algebras
Journal of Lie theory, Tome 13 (2003) no. 2, pp. 427-442
We utilize the notion of infinite dimensional diffeological Lie groups and diffeological Lie algebras to construct a Lie group structure on the space of smooth paths into a completion of a generalized Kac-Moody Lie algebra associated to a symmetrized generalized Cartan matrix. We then identify a large normal subgroup of this group of paths such that the quotient group has the sought-after properties of a candidate for a Lie group corresponding to the completion of the initial Kac Moody Lie algebra.
@article{JLT_2003_13_2_JLT_2003_13_2_a6,
author = {J. Leslie},
title = {On a {Diffeological} {Group} {Realization} of {Certain} {Generalized} {Symmetrizable} {Kac-Moody} {Lie} {Algebras}},
journal = {Journal of Lie theory},
pages = {427--442},
year = {2003},
volume = {13},
number = {2},
url = {http://geodesic.mathdoc.fr/item/JLT_2003_13_2_JLT_2003_13_2_a6/}
}
TY - JOUR AU - J. Leslie TI - On a Diffeological Group Realization of Certain Generalized Symmetrizable Kac-Moody Lie Algebras JO - Journal of Lie theory PY - 2003 SP - 427 EP - 442 VL - 13 IS - 2 UR - http://geodesic.mathdoc.fr/item/JLT_2003_13_2_JLT_2003_13_2_a6/ ID - JLT_2003_13_2_JLT_2003_13_2_a6 ER -
J. Leslie. On a Diffeological Group Realization of Certain Generalized Symmetrizable Kac-Moody Lie Algebras. Journal of Lie theory, Tome 13 (2003) no. 2, pp. 427-442. http://geodesic.mathdoc.fr/item/JLT_2003_13_2_JLT_2003_13_2_a6/