The Variety of Lie Bialgebras
Journal of Lie theory, Tome 13 (2003) no. 2, pp. 579-59.

Voir la notice de l'article provenant de la source Heldermann Verlag

We define a Lie bialgebra cohomology as the total cohomology of a double complex constructed from a Lie algebra and its dual, we show that its 2-cocycles classify Lie bialgebra formal deformations and we prove the usual cohomological condition (i.e. H2 = 0) for formal rigidity. Lastly we describe the results of explicit computations in low-dimensional cases.
@article{JLT_2003_13_2_JLT_2003_13_2_a16,
     author = {N. Ciccoli and L. Guerra },
     title = {The {Variety} of {Lie} {Bialgebras}},
     journal = {Journal of Lie theory},
     pages = {579--59},
     publisher = {mathdoc},
     volume = {13},
     number = {2},
     year = {2003},
     url = {http://geodesic.mathdoc.fr/item/JLT_2003_13_2_JLT_2003_13_2_a16/}
}
TY  - JOUR
AU  - N. Ciccoli
AU  - L. Guerra 
TI  - The Variety of Lie Bialgebras
JO  - Journal of Lie theory
PY  - 2003
SP  - 579
EP  - 59
VL  - 13
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/JLT_2003_13_2_JLT_2003_13_2_a16/
ID  - JLT_2003_13_2_JLT_2003_13_2_a16
ER  - 
%0 Journal Article
%A N. Ciccoli
%A L. Guerra 
%T The Variety of Lie Bialgebras
%J Journal of Lie theory
%D 2003
%P 579-59
%V 13
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/JLT_2003_13_2_JLT_2003_13_2_a16/
%F JLT_2003_13_2_JLT_2003_13_2_a16
N. Ciccoli; L. Guerra . The Variety of Lie Bialgebras. Journal of Lie theory, Tome 13 (2003) no. 2, pp. 579-59. http://geodesic.mathdoc.fr/item/JLT_2003_13_2_JLT_2003_13_2_a16/