Compactification of Parahermitian Symmetric Spaces and its Applications. II: Stratifications and Automorphism Groups
Journal of Lie theory, Tome 13 (2003) no. 2, pp. 535-563.

Voir la notice de l'article provenant de la source Heldermann Verlag

A simple parahermitian symmetric space is a symplectic symmetric space of a simple Lie group G with two invariant Lagrangian foliations. Such a symmetric space has a nice G-equivariant compactification. In this paper, we obtain the stratification of the compactification, whose strata are G-orbits. By using this, we determine the automorphism group of the double foliation for each simple parahermitian symmetric space.
@article{JLT_2003_13_2_JLT_2003_13_2_a13,
     author = {S. Kaneyuki },
     title = {Compactification of {Parahermitian} {Symmetric} {Spaces} and its {Applications.} {II:} {Stratifications} and {Automorphism} {Groups}},
     journal = {Journal of Lie theory},
     pages = {535--563},
     publisher = {mathdoc},
     volume = {13},
     number = {2},
     year = {2003},
     url = {http://geodesic.mathdoc.fr/item/JLT_2003_13_2_JLT_2003_13_2_a13/}
}
TY  - JOUR
AU  - S. Kaneyuki 
TI  - Compactification of Parahermitian Symmetric Spaces and its Applications. II: Stratifications and Automorphism Groups
JO  - Journal of Lie theory
PY  - 2003
SP  - 535
EP  - 563
VL  - 13
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/JLT_2003_13_2_JLT_2003_13_2_a13/
ID  - JLT_2003_13_2_JLT_2003_13_2_a13
ER  - 
%0 Journal Article
%A S. Kaneyuki 
%T Compactification of Parahermitian Symmetric Spaces and its Applications. II: Stratifications and Automorphism Groups
%J Journal of Lie theory
%D 2003
%P 535-563
%V 13
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/JLT_2003_13_2_JLT_2003_13_2_a13/
%F JLT_2003_13_2_JLT_2003_13_2_a13
S. Kaneyuki . Compactification of Parahermitian Symmetric Spaces and its Applications. II: Stratifications and Automorphism Groups. Journal of Lie theory, Tome 13 (2003) no. 2, pp. 535-563. http://geodesic.mathdoc.fr/item/JLT_2003_13_2_JLT_2003_13_2_a13/