Tensor Fields and Connections on Holomorphic Orbit Spaces of Finite Groups
Journal of Lie theory, Tome 13 (2003) no. 2, pp. 519-534.

Voir la notice de l'article provenant de la source Heldermann Verlag

For a representation of a finite group G on a complex vector space V we determine when a holomorphic (p/q)-tensor field on the principal stratum of the orbit space V/G can be lifted to a holomorphic G-invariant tensor field on V. This extends also to connections. As a consequence we determine those holomorphic diffeomorphisms on V/G which can be lifted to orbit preserving holomorphic diffeomorphisms on V. This in turn is applied to characterize complex orbifolds.
Classification : 32M17
Mots-clés : Complex orbifolds, orbit spaces of complex finite group actions
@article{JLT_2003_13_2_JLT_2003_13_2_a12,
     author = {A. Kriegl and M. Losik and P. W. Michor },
     title = {Tensor {Fields} and {Connections} on {Holomorphic} {Orbit} {Spaces} of {Finite} {Groups}},
     journal = {Journal of Lie theory},
     pages = {519--534},
     publisher = {mathdoc},
     volume = {13},
     number = {2},
     year = {2003},
     url = {http://geodesic.mathdoc.fr/item/JLT_2003_13_2_JLT_2003_13_2_a12/}
}
TY  - JOUR
AU  - A. Kriegl
AU  - M. Losik
AU  - P. W. Michor 
TI  - Tensor Fields and Connections on Holomorphic Orbit Spaces of Finite Groups
JO  - Journal of Lie theory
PY  - 2003
SP  - 519
EP  - 534
VL  - 13
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/JLT_2003_13_2_JLT_2003_13_2_a12/
ID  - JLT_2003_13_2_JLT_2003_13_2_a12
ER  - 
%0 Journal Article
%A A. Kriegl
%A M. Losik
%A P. W. Michor 
%T Tensor Fields and Connections on Holomorphic Orbit Spaces of Finite Groups
%J Journal of Lie theory
%D 2003
%P 519-534
%V 13
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/JLT_2003_13_2_JLT_2003_13_2_a12/
%F JLT_2003_13_2_JLT_2003_13_2_a12
A. Kriegl; M. Losik; P. W. Michor . Tensor Fields and Connections on Holomorphic Orbit Spaces of Finite Groups. Journal of Lie theory, Tome 13 (2003) no. 2, pp. 519-534. http://geodesic.mathdoc.fr/item/JLT_2003_13_2_JLT_2003_13_2_a12/