Tensor Fields and Connections on Holomorphic Orbit Spaces of Finite Groups
Journal of Lie theory, Tome 13 (2003) no. 2, pp. 519-534
Cet article a éte moissonné depuis la source Heldermann Verlag
For a representation of a finite group G on a complex vector space V we determine when a holomorphic (p/q)-tensor field on the principal stratum of the orbit space V/G can be lifted to a holomorphic G-invariant tensor field on V. This extends also to connections. As a consequence we determine those holomorphic diffeomorphisms on V/G which can be lifted to orbit preserving holomorphic diffeomorphisms on V. This in turn is applied to characterize complex orbifolds.
Classification :
32M17
Mots-clés : Complex orbifolds, orbit spaces of complex finite group actions
Mots-clés : Complex orbifolds, orbit spaces of complex finite group actions
@article{JLT_2003_13_2_JLT_2003_13_2_a12,
author = {A. Kriegl and M. Losik and P. W. Michor },
title = {Tensor {Fields} and {Connections} on {Holomorphic} {Orbit} {Spaces} of {Finite} {Groups}},
journal = {Journal of Lie theory},
pages = {519--534},
year = {2003},
volume = {13},
number = {2},
url = {http://geodesic.mathdoc.fr/item/JLT_2003_13_2_JLT_2003_13_2_a12/}
}
TY - JOUR AU - A. Kriegl AU - M. Losik AU - P. W. Michor TI - Tensor Fields and Connections on Holomorphic Orbit Spaces of Finite Groups JO - Journal of Lie theory PY - 2003 SP - 519 EP - 534 VL - 13 IS - 2 UR - http://geodesic.mathdoc.fr/item/JLT_2003_13_2_JLT_2003_13_2_a12/ ID - JLT_2003_13_2_JLT_2003_13_2_a12 ER -
A. Kriegl; M. Losik; P. W. Michor . Tensor Fields and Connections on Holomorphic Orbit Spaces of Finite Groups. Journal of Lie theory, Tome 13 (2003) no. 2, pp. 519-534. http://geodesic.mathdoc.fr/item/JLT_2003_13_2_JLT_2003_13_2_a12/