C infinity-Symmetries and Reduction of Equations Without Lie Point Symmetries
Journal of Lie theory, Tome 13 (2003) no. 1, pp. 167-188.

Voir la notice de l'article provenant de la source Heldermann Verlag

It is proved that several usual methods of reduction for ordinary differential equations, that do not come from the Lie theory, are derived from the existence of C infinity - symmetries. This kind of symmetries is also applied to obtain two successive reductions of an equation that lacks Lie point symmetries but is a reduced equation of another one with a three dimensional Lie algebra of point symmetries. Some relations between C infinity - symmetries and potential symmetries are also studied.
@article{JLT_2003_13_1_JLT_2003_13_1_a9,
     author = {C. Muriel and J. L. Romero },
     title = {C {\protect\textsuperscript{infinity}-Symmetries} and {Reduction} of {Equations} {Without} {Lie} {Point} {Symmetries}},
     journal = {Journal of Lie theory},
     pages = {167--188},
     publisher = {mathdoc},
     volume = {13},
     number = {1},
     year = {2003},
     url = {http://geodesic.mathdoc.fr/item/JLT_2003_13_1_JLT_2003_13_1_a9/}
}
TY  - JOUR
AU  - C. Muriel
AU  - J. L. Romero 
TI  - C infinity-Symmetries and Reduction of Equations Without Lie Point Symmetries
JO  - Journal of Lie theory
PY  - 2003
SP  - 167
EP  - 188
VL  - 13
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/JLT_2003_13_1_JLT_2003_13_1_a9/
ID  - JLT_2003_13_1_JLT_2003_13_1_a9
ER  - 
%0 Journal Article
%A C. Muriel
%A J. L. Romero 
%T C infinity-Symmetries and Reduction of Equations Without Lie Point Symmetries
%J Journal of Lie theory
%D 2003
%P 167-188
%V 13
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/JLT_2003_13_1_JLT_2003_13_1_a9/
%F JLT_2003_13_1_JLT_2003_13_1_a9
C. Muriel; J. L. Romero . C infinity-Symmetries and Reduction of Equations Without Lie Point Symmetries. Journal of Lie theory, Tome 13 (2003) no. 1, pp. 167-188. http://geodesic.mathdoc.fr/item/JLT_2003_13_1_JLT_2003_13_1_a9/