A Combinatorial Construction of G2
Journal of Lie theory, Tome 13 (2003) no. 1, pp. 155-165.

Voir la notice de l'article provenant de la source Heldermann Verlag

We show how to construct the simple exceptional Lie algebra of type  G2  by explicitly constructing its 7 dimensional representation. Technically no knowledge of Lie theory is required. The structure constants have a combinatorial meaning involving convex subsets of a partially ordered multiset of six elements. These arise from playing the Numbers and Mutation games on a certain directed multigraph.
@article{JLT_2003_13_1_JLT_2003_13_1_a8,
     author = {N. J. Wildberger },
     title = {A {Combinatorial} {Construction} of {G\protect\textsubscript{2}}},
     journal = {Journal of Lie theory},
     pages = {155--165},
     publisher = {mathdoc},
     volume = {13},
     number = {1},
     year = {2003},
     url = {http://geodesic.mathdoc.fr/item/JLT_2003_13_1_JLT_2003_13_1_a8/}
}
TY  - JOUR
AU  - N. J. Wildberger 
TI  - A Combinatorial Construction of G2
JO  - Journal of Lie theory
PY  - 2003
SP  - 155
EP  - 165
VL  - 13
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/JLT_2003_13_1_JLT_2003_13_1_a8/
ID  - JLT_2003_13_1_JLT_2003_13_1_a8
ER  - 
%0 Journal Article
%A N. J. Wildberger 
%T A Combinatorial Construction of G2
%J Journal of Lie theory
%D 2003
%P 155-165
%V 13
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/JLT_2003_13_1_JLT_2003_13_1_a8/
%F JLT_2003_13_1_JLT_2003_13_1_a8
N. J. Wildberger . A Combinatorial Construction of G2. Journal of Lie theory, Tome 13 (2003) no. 1, pp. 155-165. http://geodesic.mathdoc.fr/item/JLT_2003_13_1_JLT_2003_13_1_a8/