A Combinatorial Construction of G2
Journal of Lie theory, Tome 13 (2003) no. 1, pp. 155-165
Cet article a éte moissonné depuis la source Heldermann Verlag
We show how to construct the simple exceptional Lie algebra of type G2 by explicitly constructing its 7 dimensional representation. Technically no knowledge of Lie theory is required. The structure constants have a combinatorial meaning involving convex subsets of a partially ordered multiset of six elements. These arise from playing the Numbers and Mutation games on a certain directed multigraph.
@article{JLT_2003_13_1_JLT_2003_13_1_a8,
author = {N. J. Wildberger },
title = {A {Combinatorial} {Construction} of {G\protect\textsubscript{2}}},
journal = {Journal of Lie theory},
pages = {155--165},
year = {2003},
volume = {13},
number = {1},
url = {http://geodesic.mathdoc.fr/item/JLT_2003_13_1_JLT_2003_13_1_a8/}
}
N. J. Wildberger . A Combinatorial Construction of G2. Journal of Lie theory, Tome 13 (2003) no. 1, pp. 155-165. http://geodesic.mathdoc.fr/item/JLT_2003_13_1_JLT_2003_13_1_a8/