Local Integrating Factors
Journal of Lie theory, Tome 13 (2003) no. 1, pp. 279-289.

Voir la notice de l'article provenant de la source Heldermann Verlag

This is an investigation of local (analytic or formal) integrating factors near certain degenerate stationary points of plane analytic vector fields. The method is to use blow-ups and then apply known results from the non-degenerate case.  The main result is that in general there is no formal integrating factor which is algebraic over the quotient field of the formal power series ring.
@article{JLT_2003_13_1_JLT_2003_13_1_a16,
     author = {S. Walcher },
     title = {Local {Integrating} {Factors}},
     journal = {Journal of Lie theory},
     pages = {279--289},
     publisher = {mathdoc},
     volume = {13},
     number = {1},
     year = {2003},
     url = {http://geodesic.mathdoc.fr/item/JLT_2003_13_1_JLT_2003_13_1_a16/}
}
TY  - JOUR
AU  - S. Walcher 
TI  - Local Integrating Factors
JO  - Journal of Lie theory
PY  - 2003
SP  - 279
EP  - 289
VL  - 13
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/JLT_2003_13_1_JLT_2003_13_1_a16/
ID  - JLT_2003_13_1_JLT_2003_13_1_a16
ER  - 
%0 Journal Article
%A S. Walcher 
%T Local Integrating Factors
%J Journal of Lie theory
%D 2003
%P 279-289
%V 13
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/JLT_2003_13_1_JLT_2003_13_1_a16/
%F JLT_2003_13_1_JLT_2003_13_1_a16
S. Walcher . Local Integrating Factors. Journal of Lie theory, Tome 13 (2003) no. 1, pp. 279-289. http://geodesic.mathdoc.fr/item/JLT_2003_13_1_JLT_2003_13_1_a16/