Sous-Groupes Elliptiques de Groupes Lin�aires sur un Corps Valu�
Journal of Lie theory, Tome 13 (2003) no. 1, pp. 271-278
Cet article a éte moissonné depuis la source Heldermann Verlag
Let $n$ be a positive integer and $\mathbb{F}$ be a valuated field. We prove the following result: Let $\Gamma$ be a subgroup of $\mathrm{GL}_n(\mathbb{F})$ generated by a bounded subset, such that every element of $\Gamma$ belongs to a bounded subgroup. Then $\Gamma$ is bounded. \par This implies the following. Let $G$ be a connected reductive group over $\mathbb{F}$. Suppose that $\mathbb{F}$ is henselian (e.g. complete) and either that $G$ is almost split over $\mathbb{F}$, or that the valuation of $\mathbb{F}$ is discrete and $\mathbb{F}$ has perfect (e.g. finite) residue class field. Let $\Delta$ be its (extended) Bruhat-Tits building. Let $x_0$ be any point in $\Delta$ and $\overline{\Delta}$ be the completion of $\Delta$. Let $\Gamma$ be a subgroup of $G$ generated by $S$ with $S.x_0$ bounded, such that every element of $\Gamma$ fixes a point in $\overline{\Delta}$, then $\Gamma$ has a global fixed point in $\overline{\Delta}$.
@article{JLT_2003_13_1_JLT_2003_13_1_a15,
author = {A. Parreau },
title = {Sous-Groupes {Elliptiques} de {Groupes} {Lin�aires} sur un {Corps} {Valu�}},
journal = {Journal of Lie theory},
pages = {271--278},
year = {2003},
volume = {13},
number = {1},
url = {http://geodesic.mathdoc.fr/item/JLT_2003_13_1_JLT_2003_13_1_a15/}
}
A. Parreau . Sous-Groupes Elliptiques de Groupes Lin�aires sur un Corps Valu�. Journal of Lie theory, Tome 13 (2003) no. 1, pp. 271-278. http://geodesic.mathdoc.fr/item/JLT_2003_13_1_JLT_2003_13_1_a15/