Relative and Absolute Differential Invariants for Conformal Curves
Journal of Lie theory, Tome 13 (2003) no. 1, pp. 213-245
Cet article a éte moissonné depuis la source Heldermann Verlag
We classify all vector relative differential invariants with Jacobian weight for the conformal action of O(n+1, 1) on parametrized curves in Rn. We then write a generating set of independent conformal differential invariants, for both parametrized and unparametrized curves, as simple combinations of the relative invariants. We also find an invariant frame for unparametrized curves via a Gram-Schmidt procedure. The invariants of unparametrized curves correspond to the ones found by A. Fialkow ["The conformal theory of curves", Transactions of the AMS 51 (1942) 435--456]. As a corollary, we obtain the most general formula for evolutions of curves in Rn invariant under the conformal action of the group.
@article{JLT_2003_13_1_JLT_2003_13_1_a12,
author = {G. Mari Beffa },
title = {Relative and {Absolute} {Differential} {Invariants} for {Conformal} {Curves}},
journal = {Journal of Lie theory},
pages = {213--245},
year = {2003},
volume = {13},
number = {1},
url = {http://geodesic.mathdoc.fr/item/JLT_2003_13_1_JLT_2003_13_1_a12/}
}
G. Mari Beffa . Relative and Absolute Differential Invariants for Conformal Curves. Journal of Lie theory, Tome 13 (2003) no. 1, pp. 213-245. http://geodesic.mathdoc.fr/item/JLT_2003_13_1_JLT_2003_13_1_a12/