Relative and Absolute Differential Invariants for Conformal Curves
Journal of Lie theory, Tome 13 (2003) no. 1, pp. 213-245.

Voir la notice de l'article provenant de la source Heldermann Verlag

We classify all vector relative differential invariants with Jacobian weight for the conformal action of  O(n+1, 1) on parametrized curves in  Rn.  We then write a generating set of independent conformal differential invariants, for both parametrized and unparametrized curves, as simple combinations of the relative invariants.  We also find an invariant frame for unparametrized curves via a Gram-Schmidt procedure.  The invariants of unparametrized curves correspond to the ones found by A. Fialkow ["The conformal theory of curves", Transactions of the AMS 51 (1942) 435--456].  As a corollary, we obtain the most general formula for evolutions of curves in  R invariant under the conformal action of the group.
@article{JLT_2003_13_1_JLT_2003_13_1_a12,
     author = {G. Mari Beffa },
     title = {Relative and {Absolute} {Differential} {Invariants} for {Conformal} {Curves}},
     journal = {Journal of Lie theory},
     pages = {213--245},
     publisher = {mathdoc},
     volume = {13},
     number = {1},
     year = {2003},
     url = {http://geodesic.mathdoc.fr/item/JLT_2003_13_1_JLT_2003_13_1_a12/}
}
TY  - JOUR
AU  - G. Mari Beffa 
TI  - Relative and Absolute Differential Invariants for Conformal Curves
JO  - Journal of Lie theory
PY  - 2003
SP  - 213
EP  - 245
VL  - 13
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/JLT_2003_13_1_JLT_2003_13_1_a12/
ID  - JLT_2003_13_1_JLT_2003_13_1_a12
ER  - 
%0 Journal Article
%A G. Mari Beffa 
%T Relative and Absolute Differential Invariants for Conformal Curves
%J Journal of Lie theory
%D 2003
%P 213-245
%V 13
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/JLT_2003_13_1_JLT_2003_13_1_a12/
%F JLT_2003_13_1_JLT_2003_13_1_a12
G. Mari Beffa . Relative and Absolute Differential Invariants for Conformal Curves. Journal of Lie theory, Tome 13 (2003) no. 1, pp. 213-245. http://geodesic.mathdoc.fr/item/JLT_2003_13_1_JLT_2003_13_1_a12/