Vanishing Properties of Analytically Continued Matrix Coefficients
Journal of Lie theory, Tome 12 (2002) no. 2, pp. 409-421
Cet article a éte moissonné depuis la source Heldermann Verlag
We consider (generalized) matrix coefficients associated to irreducible unitary representations of a simple Lie group G which admit holomorphic continuation to a complex semigroup domain S, subset of GC. Vanishing theorems for these analytically continued matrix coefficients, one of Howe-Moore type and one for cusp forms, are proved.
@article{JLT_2002_12_2_JLT_2002_12_2_a5,
author = {B. Kr�tz and M. Otto },
title = {Vanishing {Properties} of {Analytically} {Continued} {Matrix} {Coefficients}},
journal = {Journal of Lie theory},
pages = {409--421},
year = {2002},
volume = {12},
number = {2},
url = {http://geodesic.mathdoc.fr/item/JLT_2002_12_2_JLT_2002_12_2_a5/}
}
B. Kr�tz; M. Otto . Vanishing Properties of Analytically Continued Matrix Coefficients. Journal of Lie theory, Tome 12 (2002) no. 2, pp. 409-421. http://geodesic.mathdoc.fr/item/JLT_2002_12_2_JLT_2002_12_2_a5/