The Outer Automorphism Group of Normalizers of Maximal Tori in Connected Compact Lie Groups
Journal of Lie theory, Tome 12 (2002) no. 2, pp. 357-368
Cet article a éte moissonné depuis la source Heldermann Verlag
Let G be a connected compact Lie group, T a maximal torus of G, N = NG(T) its normalizer and W = N/T the Weyl group of G. We show that the outer automorphism group of N canonically decomposes as a semidirect product, where the normal subgroup is given by the cohomology group H1(W; T).
@article{JLT_2002_12_2_JLT_2002_12_2_a2,
author = {J.-F. H�mmerli },
title = {The {Outer} {Automorphism} {Group} of {Normalizers} of {Maximal} {Tori} in {Connected} {Compact} {Lie} {Groups}},
journal = {Journal of Lie theory},
pages = {357--368},
year = {2002},
volume = {12},
number = {2},
url = {http://geodesic.mathdoc.fr/item/JLT_2002_12_2_JLT_2002_12_2_a2/}
}
TY - JOUR AU - J.-F. H�mmerli TI - The Outer Automorphism Group of Normalizers of Maximal Tori in Connected Compact Lie Groups JO - Journal of Lie theory PY - 2002 SP - 357 EP - 368 VL - 12 IS - 2 UR - http://geodesic.mathdoc.fr/item/JLT_2002_12_2_JLT_2002_12_2_a2/ ID - JLT_2002_12_2_JLT_2002_12_2_a2 ER -
J.-F. H�mmerli . The Outer Automorphism Group of Normalizers of Maximal Tori in Connected Compact Lie Groups. Journal of Lie theory, Tome 12 (2002) no. 2, pp. 357-368. http://geodesic.mathdoc.fr/item/JLT_2002_12_2_JLT_2002_12_2_a2/