A Leibniz Algebra Structure on the Second Tensor Product
Journal of Lie theory, Tome 12 (2002) no. 2, pp. 583-596
Cet article a éte moissonné depuis la source Heldermann Verlag
\def\g{{\mathfrak g}} \newcommand{\tp}{\otimes} \newcommand{\utp}{\underline\otimes} \newcommand{\bt}{\boxtimes}For any Lie algebra $\g$, the bracket $$ [x\tp y,a\tp b]:=[x,[a,b]]\tp y+x\tp [y,[a,b]] $$ defines a Leibniz algebra structure on the vector space $\g \tp \g$. We let $\g\utp\g$ be the maximal Lie algebra quotient of $\g\tp \g$. We prove that this particular Lie algebra is an abelian extension of the Lie algebra version of the nonabelian tensor product $\g \bt \g $ of R. Brown and J.-L. Loday [Topology 26 (1987) 311--335] constructed by G. J. Ellis [J. Pure Appl. Algebra 46 (1987) 111--115; Glasgow Math. J. 33 (1991) 101--120]. We compute this abelian extension and Leibniz homology of $\g\tp \g$ in the case, when $\g$ is a finite dimensional semi-simple Lie algebra over a field of characteristic zero.
@article{JLT_2002_12_2_JLT_2002_12_2_a18,
author = {R. Kurdiani and T. Pirashvili },
title = {A {Leibniz} {Algebra} {Structure} on the {Second} {Tensor} {Product}},
journal = {Journal of Lie theory},
pages = {583--596},
year = {2002},
volume = {12},
number = {2},
url = {http://geodesic.mathdoc.fr/item/JLT_2002_12_2_JLT_2002_12_2_a18/}
}
R. Kurdiani; T. Pirashvili . A Leibniz Algebra Structure on the Second Tensor Product. Journal of Lie theory, Tome 12 (2002) no. 2, pp. 583-596. http://geodesic.mathdoc.fr/item/JLT_2002_12_2_JLT_2002_12_2_a18/