Convexity of Hamiltonian Manifolds
Journal of Lie theory, Tome 12 (2002) no. 2, pp. 571-582.

Voir la notice de l'article provenant de la source Heldermann Verlag

We study point set topological properties of the moment map. In particular, we introduce the notion of a convex Hamiltonian manifold. This notion combines convexity of the momentum image and connectedness of moment map fibers with a certain openness requirement for the moment map. We show that convexity rules out many pathologies for moment maps. Then we show that the most important classes of Hamiltonian manifolds (e.g., unitary vector spaces, compact manifolds, or cotangent bundles) are in fact convex. Moreover, we prove that every Hamiltonian manifold is locally convex.
@article{JLT_2002_12_2_JLT_2002_12_2_a17,
     author = {F. Knop },
     title = {Convexity of {Hamiltonian} {Manifolds}},
     journal = {Journal of Lie theory},
     pages = {571--582},
     publisher = {mathdoc},
     volume = {12},
     number = {2},
     year = {2002},
     url = {http://geodesic.mathdoc.fr/item/JLT_2002_12_2_JLT_2002_12_2_a17/}
}
TY  - JOUR
AU  - F. Knop 
TI  - Convexity of Hamiltonian Manifolds
JO  - Journal of Lie theory
PY  - 2002
SP  - 571
EP  - 582
VL  - 12
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/JLT_2002_12_2_JLT_2002_12_2_a17/
ID  - JLT_2002_12_2_JLT_2002_12_2_a17
ER  - 
%0 Journal Article
%A F. Knop 
%T Convexity of Hamiltonian Manifolds
%J Journal of Lie theory
%D 2002
%P 571-582
%V 12
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/JLT_2002_12_2_JLT_2002_12_2_a17/
%F JLT_2002_12_2_JLT_2002_12_2_a17
F. Knop . Convexity of Hamiltonian Manifolds. Journal of Lie theory, Tome 12 (2002) no. 2, pp. 571-582. http://geodesic.mathdoc.fr/item/JLT_2002_12_2_JLT_2002_12_2_a17/