Two Observations on Irreducible Representations of Groups
Journal of Lie theory, Tome 12 (2002) no. 2, pp. 535-538.

Voir la notice de l'article provenant de la source Heldermann Verlag

For an irreducible representation of a connected affine algebraic group G in a vector space V of dimension at least 2, it is shown that the intersection of any orbit π(G)x (with x in V) and any hyperplane of V is non-empty. The question is raised to decide whether an analogous fact holds for irreducible continuous representations of connected compact groups, for example of SU(2).
Classification : 22E45
Mots-clés : Irreducible representations, orbits, algebraic groups, compact groups
@article{JLT_2002_12_2_JLT_2002_12_2_a14,
     author = {J. Galindo and P. de la Harpe and T. Vust },
     title = {Two {Observations} on {Irreducible} {Representations} of {Groups}},
     journal = {Journal of Lie theory},
     pages = {535--538},
     publisher = {mathdoc},
     volume = {12},
     number = {2},
     year = {2002},
     url = {http://geodesic.mathdoc.fr/item/JLT_2002_12_2_JLT_2002_12_2_a14/}
}
TY  - JOUR
AU  - J. Galindo
AU  - P. de la Harpe
AU  - T. Vust 
TI  - Two Observations on Irreducible Representations of Groups
JO  - Journal of Lie theory
PY  - 2002
SP  - 535
EP  - 538
VL  - 12
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/JLT_2002_12_2_JLT_2002_12_2_a14/
ID  - JLT_2002_12_2_JLT_2002_12_2_a14
ER  - 
%0 Journal Article
%A J. Galindo
%A P. de la Harpe
%A T. Vust 
%T Two Observations on Irreducible Representations of Groups
%J Journal of Lie theory
%D 2002
%P 535-538
%V 12
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/JLT_2002_12_2_JLT_2002_12_2_a14/
%F JLT_2002_12_2_JLT_2002_12_2_a14
J. Galindo; P. de la Harpe; T. Vust . Two Observations on Irreducible Representations of Groups. Journal of Lie theory, Tome 12 (2002) no. 2, pp. 535-538. http://geodesic.mathdoc.fr/item/JLT_2002_12_2_JLT_2002_12_2_a14/