Two Observations on Irreducible Representations of Groups
Journal of Lie theory, Tome 12 (2002) no. 2, pp. 535-538
Cet article a éte moissonné depuis la source Heldermann Verlag
For an irreducible representation of a connected affine algebraic group G in a vector space V of dimension at least 2, it is shown that the intersection of any orbit π(G)x (with x in V) and any hyperplane of V is non-empty. The question is raised to decide whether an analogous fact holds for irreducible continuous representations of connected compact groups, for example of SU(2).
Classification :
22E45
Mots-clés : Irreducible representations, orbits, algebraic groups, compact groups
Mots-clés : Irreducible representations, orbits, algebraic groups, compact groups
@article{JLT_2002_12_2_JLT_2002_12_2_a14,
author = {J. Galindo and P. de la Harpe and T. Vust },
title = {Two {Observations} on {Irreducible} {Representations} of {Groups}},
journal = {Journal of Lie theory},
pages = {535--538},
year = {2002},
volume = {12},
number = {2},
url = {http://geodesic.mathdoc.fr/item/JLT_2002_12_2_JLT_2002_12_2_a14/}
}
TY - JOUR AU - J. Galindo AU - P. de la Harpe AU - T. Vust TI - Two Observations on Irreducible Representations of Groups JO - Journal of Lie theory PY - 2002 SP - 535 EP - 538 VL - 12 IS - 2 UR - http://geodesic.mathdoc.fr/item/JLT_2002_12_2_JLT_2002_12_2_a14/ ID - JLT_2002_12_2_JLT_2002_12_2_a14 ER -
J. Galindo; P. de la Harpe; T. Vust . Two Observations on Irreducible Representations of Groups. Journal of Lie theory, Tome 12 (2002) no. 2, pp. 535-538. http://geodesic.mathdoc.fr/item/JLT_2002_12_2_JLT_2002_12_2_a14/