On a Family of Operators and their Lie Algebras
Journal of Lie theory, Tome 12 (2002) no. 2, pp. 503-514.

Voir la notice de l'article provenant de la source Heldermann Verlag

An infinite family of differential operators is constructed. Each of these operators defines a Lie bracket and the operator is a homomorphism from the new Lie algebra to the standard Lie algebra. An interesting feature of these operators is that they factorize into first order operators with integer coefficients. This generalizes recent results of Zhiber and Sokolov.
@article{JLT_2002_12_2_JLT_2002_12_2_a11,
     author = {J. A. Sanders and J. P. Wang },
     title = {On a {Family} of {Operators} and their {Lie} {Algebras}},
     journal = {Journal of Lie theory},
     pages = {503--514},
     publisher = {mathdoc},
     volume = {12},
     number = {2},
     year = {2002},
     url = {http://geodesic.mathdoc.fr/item/JLT_2002_12_2_JLT_2002_12_2_a11/}
}
TY  - JOUR
AU  - J. A. Sanders
AU  - J. P. Wang 
TI  - On a Family of Operators and their Lie Algebras
JO  - Journal of Lie theory
PY  - 2002
SP  - 503
EP  - 514
VL  - 12
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/JLT_2002_12_2_JLT_2002_12_2_a11/
ID  - JLT_2002_12_2_JLT_2002_12_2_a11
ER  - 
%0 Journal Article
%A J. A. Sanders
%A J. P. Wang 
%T On a Family of Operators and their Lie Algebras
%J Journal of Lie theory
%D 2002
%P 503-514
%V 12
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/JLT_2002_12_2_JLT_2002_12_2_a11/
%F JLT_2002_12_2_JLT_2002_12_2_a11
J. A. Sanders; J. P. Wang . On a Family of Operators and their Lie Algebras. Journal of Lie theory, Tome 12 (2002) no. 2, pp. 503-514. http://geodesic.mathdoc.fr/item/JLT_2002_12_2_JLT_2002_12_2_a11/