On Kazhdan's Property (T) for Sp2(k)
Journal of Lie theory, Tome 12 (2002) no. 1, pp. 31-39.

Voir la notice de l'article provenant de la source Heldermann Verlag

The aim of this note is to give a new and elementary proof of Kazhdan's Property (T) for Sp2(k), the symplectic group on 4 variables, for any local field k. The crucial step is the proof that the Dirac measure δ0 at 0 is the unique mean on the Borel subsets of the second symmetric power S2(k2) of k2 which is invariant under the natural action of SL2(k). In the case where k has characteristic 2, we observe that this is no longer true if S2(k2) is replaced by its dual, the space of the symmetric bilinear forms on k2.
@article{JLT_2002_12_1_JLT_2002_12_1_a2,
     author = {M. B. Bekka and M. Neuhauser },
     title = {On {Kazhdan's} {Property} {(T)} for {Sp\protect\textsubscript{2}(k)}},
     journal = {Journal of Lie theory},
     pages = {31--39},
     publisher = {mathdoc},
     volume = {12},
     number = {1},
     year = {2002},
     url = {http://geodesic.mathdoc.fr/item/JLT_2002_12_1_JLT_2002_12_1_a2/}
}
TY  - JOUR
AU  - M. B. Bekka
AU  - M. Neuhauser 
TI  - On Kazhdan's Property (T) for Sp2(k)
JO  - Journal of Lie theory
PY  - 2002
SP  - 31
EP  - 39
VL  - 12
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/JLT_2002_12_1_JLT_2002_12_1_a2/
ID  - JLT_2002_12_1_JLT_2002_12_1_a2
ER  - 
%0 Journal Article
%A M. B. Bekka
%A M. Neuhauser 
%T On Kazhdan's Property (T) for Sp2(k)
%J Journal of Lie theory
%D 2002
%P 31-39
%V 12
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/JLT_2002_12_1_JLT_2002_12_1_a2/
%F JLT_2002_12_1_JLT_2002_12_1_a2
M. B. Bekka; M. Neuhauser . On Kazhdan's Property (T) for Sp2(k). Journal of Lie theory, Tome 12 (2002) no. 1, pp. 31-39. http://geodesic.mathdoc.fr/item/JLT_2002_12_1_JLT_2002_12_1_a2/