The Abelian Subgroup Conjecture: A Counter Example
Journal of Lie theory, Tome 12 (2002) no. 1, pp. 305-308
Cet article a éte moissonné depuis la source Heldermann Verlag
If an abelian subgroup A of a locally compact group G has the same weigth as G, it is termed "large" [see K. H. Hofmann and S. A. Morris, "Compact groups with large abelian subgroups", Math. Proc. Cambridge Philos. Soc. 133 (2002) 235--247]. It has been conjectured that every compact group has a large abelian subgroup. In this note we show that no free pro-p group F(X) on a set X of cardinality greater than Aleph0 contains a large abelian subgroup.
@article{JLT_2002_12_1_JLT_2002_12_1_a16,
author = {W. Herfort },
title = {The {Abelian} {Subgroup} {Conjecture:} {A} {Counter} {Example}},
journal = {Journal of Lie theory},
pages = {305--308},
year = {2002},
volume = {12},
number = {1},
url = {http://geodesic.mathdoc.fr/item/JLT_2002_12_1_JLT_2002_12_1_a16/}
}
W. Herfort . The Abelian Subgroup Conjecture: A Counter Example. Journal of Lie theory, Tome 12 (2002) no. 1, pp. 305-308. http://geodesic.mathdoc.fr/item/JLT_2002_12_1_JLT_2002_12_1_a16/