The Abelian Subgroup Conjecture: A Counter Example
Journal of Lie theory, Tome 12 (2002) no. 1, pp. 305-308.

Voir la notice de l'article provenant de la source Heldermann Verlag

If an abelian subgroup A of a locally compact group G has the same weigth as G, it is termed "large" [see K. H. Hofmann and S. A. Morris, "Compact groups with large abelian subgroups", Math. Proc. Cambridge Philos. Soc. 133 (2002) 235--247]. It has been conjectured that every compact group has a large abelian subgroup. In this note we show that no free pro-p group F(X) on a set X of cardinality greater than Aleph0 contains a large abelian subgroup.
@article{JLT_2002_12_1_JLT_2002_12_1_a16,
     author = {W. Herfort },
     title = {The {Abelian} {Subgroup} {Conjecture:} {A} {Counter} {Example}},
     journal = {Journal of Lie theory},
     pages = {305--308},
     publisher = {mathdoc},
     volume = {12},
     number = {1},
     year = {2002},
     url = {http://geodesic.mathdoc.fr/item/JLT_2002_12_1_JLT_2002_12_1_a16/}
}
TY  - JOUR
AU  - W. Herfort 
TI  - The Abelian Subgroup Conjecture: A Counter Example
JO  - Journal of Lie theory
PY  - 2002
SP  - 305
EP  - 308
VL  - 12
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/JLT_2002_12_1_JLT_2002_12_1_a16/
ID  - JLT_2002_12_1_JLT_2002_12_1_a16
ER  - 
%0 Journal Article
%A W. Herfort 
%T The Abelian Subgroup Conjecture: A Counter Example
%J Journal of Lie theory
%D 2002
%P 305-308
%V 12
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/JLT_2002_12_1_JLT_2002_12_1_a16/
%F JLT_2002_12_1_JLT_2002_12_1_a16
W. Herfort . The Abelian Subgroup Conjecture: A Counter Example. Journal of Lie theory, Tome 12 (2002) no. 1, pp. 305-308. http://geodesic.mathdoc.fr/item/JLT_2002_12_1_JLT_2002_12_1_a16/