A Note on Observable Subgroups of Linear Algebraic Groups and a Theorem of Chevalley
Journal of Lie theory, Tome 12 (2002) no. 1, pp. 301-304.

Voir la notice de l'article provenant de la source Heldermann Verlag

Let H be an algebraic subgroup of a linear algebraic group G over an algebraically closed field K. We show that H is observable in G if and only if there exists a finite-dimensional rational G-module V and an element v of V such that H is the isotropy subgroup of v as well as the isotropy subgroup of the line Kv. Moreover, we give a similar result in the case where H contains a normal algebraic subgroup A which is observable in G. In this case, we deduce that H is observable in G whenever H/A has non non-trivial rational characters. We also give an example from complex analytic groups.
@article{JLT_2002_12_1_JLT_2002_12_1_a15,
     author = {N. Nahlus },
     title = {A {Note} on {Observable} {Subgroups} of {Linear} {Algebraic} {Groups} and a {Theorem} of {Chevalley}},
     journal = {Journal of Lie theory},
     pages = {301--304},
     publisher = {mathdoc},
     volume = {12},
     number = {1},
     year = {2002},
     url = {http://geodesic.mathdoc.fr/item/JLT_2002_12_1_JLT_2002_12_1_a15/}
}
TY  - JOUR
AU  - N. Nahlus 
TI  - A Note on Observable Subgroups of Linear Algebraic Groups and a Theorem of Chevalley
JO  - Journal of Lie theory
PY  - 2002
SP  - 301
EP  - 304
VL  - 12
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/JLT_2002_12_1_JLT_2002_12_1_a15/
ID  - JLT_2002_12_1_JLT_2002_12_1_a15
ER  - 
%0 Journal Article
%A N. Nahlus 
%T A Note on Observable Subgroups of Linear Algebraic Groups and a Theorem of Chevalley
%J Journal of Lie theory
%D 2002
%P 301-304
%V 12
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/JLT_2002_12_1_JLT_2002_12_1_a15/
%F JLT_2002_12_1_JLT_2002_12_1_a15
N. Nahlus . A Note on Observable Subgroups of Linear Algebraic Groups and a Theorem of Chevalley. Journal of Lie theory, Tome 12 (2002) no. 1, pp. 301-304. http://geodesic.mathdoc.fr/item/JLT_2002_12_1_JLT_2002_12_1_a15/