Characterization of the Lp-Range of the Poisson Transform in Hyperbolic Spaces B(Fn)
Journal of Lie theory, Tome 12 (2002) no. 1, pp. 1-14.

Voir la notice de l'article provenant de la source Heldermann Verlag

\newcommand{\sC}{{\mathbb C}} \newcommand{\sF}{{\mathbb F}} \newcommand{\sR}{{\mathbb R}} \newcommand{\sH}{{\mathbb H}} The aim of this paper is to give, in a unified manner, the characterization of the $L^p$-range ($p\geq 2$) of the Poisson transform $P_{\lambda}$ for the hyperbolic spaces $B({\sF}^n)$ over ${\sF}=\sR, \, \sC$ or the quaternions $\sH$. Namely, if $\Delta $ is the Laplace-Beltrami operator of $B({\sF}^n)$ and $sF$ a $\sC$-valued function on $B({\sF}^n)$ satisfying $\Delta F=-(\lambda ^2+\sigma ^2)F; \lambda \in \sR ^{*}$ then we establish: i) F is the Poisson transform of some $f\in L^2(\partial B({\sF}^n))$ (ie $P_{\lambda}f=F$) if and only if it satisfies the growth condition: $$ \sup _{t >0}\frac{1}{t}\int_{B(0,t)} 'F(x)'^2d \mu (x)+\infty,$$ where $B(0,t)$ is the ball of radius $t$ centered at $0$ and $d\mu $ the invariant measure on $B({\sF}^n)$. ii) F is the Poisson transform of some $f\in L^p(\partial B({\sF}^n))$, $p\geq 2$; if and only if it satisfies the following Hardy-type growth condition: $$ \sup _{0\leq r 1} (1-r^2)^{-\frac{\sigma }{2}}\left ( \int_{\partial B({\sF}^n)} 'F(r\theta)'^p d\theta ) \right ) ^{\frac{1}{p}} +\infty .$$
Mots-clés : Hyperbolic spaces, Poisson transform, Calderon Zygumund estimates, Jacobi functions
@article{JLT_2002_12_1_JLT_2002_12_1_a0,
     author = {A. Boussejra and H. Sami },
     title = {Characterization of the {L\protect\textsuperscript{p}-Range} of the {Poisson} {Transform} in {Hyperbolic} {Spaces} {<b>B</b>(F\protect\textsuperscript{n})}},
     journal = {Journal of Lie theory},
     pages = {1--14},
     publisher = {mathdoc},
     volume = {12},
     number = {1},
     year = {2002},
     url = {http://geodesic.mathdoc.fr/item/JLT_2002_12_1_JLT_2002_12_1_a0/}
}
TY  - JOUR
AU  - A. Boussejra
AU  - H. Sami 
TI  - Characterization of the Lp-Range of the Poisson Transform in Hyperbolic Spaces B(Fn)
JO  - Journal of Lie theory
PY  - 2002
SP  - 1
EP  - 14
VL  - 12
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/JLT_2002_12_1_JLT_2002_12_1_a0/
ID  - JLT_2002_12_1_JLT_2002_12_1_a0
ER  - 
%0 Journal Article
%A A. Boussejra
%A H. Sami 
%T Characterization of the Lp-Range of the Poisson Transform in Hyperbolic Spaces B(Fn)
%J Journal of Lie theory
%D 2002
%P 1-14
%V 12
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/JLT_2002_12_1_JLT_2002_12_1_a0/
%F JLT_2002_12_1_JLT_2002_12_1_a0
A. Boussejra; H. Sami . Characterization of the Lp-Range of the Poisson Transform in Hyperbolic Spaces B(Fn). Journal of Lie theory, Tome 12 (2002) no. 1, pp. 1-14. http://geodesic.mathdoc.fr/item/JLT_2002_12_1_JLT_2002_12_1_a0/