Invariant Theory for the Orthogonal Group via Star Products
Journal of Lie theory, Tome 11 (2001) no. 2, pp. 441-458
Cet article a éte moissonné depuis la source Heldermann Verlag
We apply star products to the invariant theory for multiplicity free actions. The space of invariants for a compact linear multiplicity free action has two canonical bases which are orthogonal with respect to two different inner products. One of these arises in connection with the star product. We use this fact to determine the elements in the canonical bases for the invariants under the action of SO(n, R) �T on Cn. The formulae obtained improve prior results due to the last two authors and Jenkins.
@article{JLT_2001_11_2_JLT_2001_11_2_a8,
author = {D. Arnal and O. B. Baoua and C. Benson and G. Ratcliff },
title = {Invariant {Theory} for the {Orthogonal} {Group} via {Star} {Products}},
journal = {Journal of Lie theory},
pages = {441--458},
year = {2001},
volume = {11},
number = {2},
url = {http://geodesic.mathdoc.fr/item/JLT_2001_11_2_JLT_2001_11_2_a8/}
}
TY - JOUR AU - D. Arnal AU - O. B. Baoua AU - C. Benson AU - G. Ratcliff TI - Invariant Theory for the Orthogonal Group via Star Products JO - Journal of Lie theory PY - 2001 SP - 441 EP - 458 VL - 11 IS - 2 UR - http://geodesic.mathdoc.fr/item/JLT_2001_11_2_JLT_2001_11_2_a8/ ID - JLT_2001_11_2_JLT_2001_11_2_a8 ER -
D. Arnal; O. B. Baoua; C. Benson; G. Ratcliff . Invariant Theory for the Orthogonal Group via Star Products. Journal of Lie theory, Tome 11 (2001) no. 2, pp. 441-458. http://geodesic.mathdoc.fr/item/JLT_2001_11_2_JLT_2001_11_2_a8/