The Closure Diagrams for Nilpotent Orbits of Real Forms of E6
Journal of Lie theory, Tome 11 (2001) no. 2, pp. 381-413.

Voir la notice de l'article provenant de la source Heldermann Verlag

Let O1 and O2 be adjoint nilpotent orbits in a real semisimple Lie algebra. Write O1 ≥ O2 if O2 is contained in the closure of O1. This gives a partial order on the set of such orbits, which is known as the closure ordering. We determine this ordering for the adjoint nilpotent orbits of the four noncompact real forms of the simple complex Lie algebra E6.
@article{JLT_2001_11_2_JLT_2001_11_2_a5,
     author = {D. Z. Dokovic },
     title = {The {Closure} {Diagrams} for {Nilpotent} {Orbits} of {Real} {Forms} of {E\protect\textsubscript{6}}},
     journal = {Journal of Lie theory},
     pages = {381--413},
     publisher = {mathdoc},
     volume = {11},
     number = {2},
     year = {2001},
     url = {http://geodesic.mathdoc.fr/item/JLT_2001_11_2_JLT_2001_11_2_a5/}
}
TY  - JOUR
AU  - D. Z. Dokovic 
TI  - The Closure Diagrams for Nilpotent Orbits of Real Forms of E6
JO  - Journal of Lie theory
PY  - 2001
SP  - 381
EP  - 413
VL  - 11
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/JLT_2001_11_2_JLT_2001_11_2_a5/
ID  - JLT_2001_11_2_JLT_2001_11_2_a5
ER  - 
%0 Journal Article
%A D. Z. Dokovic 
%T The Closure Diagrams for Nilpotent Orbits of Real Forms of E6
%J Journal of Lie theory
%D 2001
%P 381-413
%V 11
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/JLT_2001_11_2_JLT_2001_11_2_a5/
%F JLT_2001_11_2_JLT_2001_11_2_a5
D. Z. Dokovic . The Closure Diagrams for Nilpotent Orbits of Real Forms of E6. Journal of Lie theory, Tome 11 (2001) no. 2, pp. 381-413. http://geodesic.mathdoc.fr/item/JLT_2001_11_2_JLT_2001_11_2_a5/