The Closure Diagrams for Nilpotent Orbits of Real Forms of E6
Journal of Lie theory, Tome 11 (2001) no. 2, pp. 381-413
Voir la notice de l'article provenant de la source Heldermann Verlag
Let O1 and O2 be adjoint nilpotent orbits in a real semisimple Lie algebra. Write O1 ≥ O2 if O2 is contained in the closure of O1. This gives a partial order on the set of such orbits, which is known as the closure ordering. We determine this ordering for the adjoint nilpotent orbits of the four noncompact real forms of the simple complex Lie algebra E6.
@article{JLT_2001_11_2_JLT_2001_11_2_a5,
author = {D. Z. Dokovic },
title = {The {Closure} {Diagrams} for {Nilpotent} {Orbits} of {Real} {Forms} of {E\protect\textsubscript{6}}},
journal = {Journal of Lie theory},
pages = {381--413},
publisher = {mathdoc},
volume = {11},
number = {2},
year = {2001},
url = {http://geodesic.mathdoc.fr/item/JLT_2001_11_2_JLT_2001_11_2_a5/}
}
D. Z. Dokovic . The Closure Diagrams for Nilpotent Orbits of Real Forms of E6. Journal of Lie theory, Tome 11 (2001) no. 2, pp. 381-413. http://geodesic.mathdoc.fr/item/JLT_2001_11_2_JLT_2001_11_2_a5/