Jacobi Forms on Symmetric Domains and Torus Bundles over Abelian Schemes
Journal of Lie theory, Tome 11 (2001) no. 2, pp. 545-557
Voir la notice de l'article provenant de la source Heldermann Verlag
We introduce Jacobi forms on Hermitian symmetric domains using automorphy factors associated to torus bundles over abelian schemes. We discuss families of modular forms determined by such Jacobi forms and prove that these Jacobi forms reduce to the usual Jacobi forms of several variables when the Hermitian symmetric domain is a Siegel upper half space.
@article{JLT_2001_11_2_JLT_2001_11_2_a14,
author = {M. H. Lee },
title = {Jacobi {Forms} on {Symmetric} {Domains} and {Torus} {Bundles} over {Abelian} {Schemes}},
journal = {Journal of Lie theory},
pages = {545--557},
publisher = {mathdoc},
volume = {11},
number = {2},
year = {2001},
url = {http://geodesic.mathdoc.fr/item/JLT_2001_11_2_JLT_2001_11_2_a14/}
}
M. H. Lee . Jacobi Forms on Symmetric Domains and Torus Bundles over Abelian Schemes. Journal of Lie theory, Tome 11 (2001) no. 2, pp. 545-557. http://geodesic.mathdoc.fr/item/JLT_2001_11_2_JLT_2001_11_2_a14/